These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


260 related items for PubMed ID: 16642848

  • 21. A lumped mucosal wave model of the vocal folds revisited: recent extensions and oscillation hysteresis.
    Lucero JC, Koenig LL, Lourenço KG, Ruty N, Pelorson X.
    J Acoust Soc Am; 2011 Mar; 129(3):1568-79. PubMed ID: 21428520
    [Abstract] [Full Text] [Related]

  • 22. [Phase relationship between dynamics of the subglottic pressure and oscillatory movement of the vocal folds. I. Sustained phonation].
    Dejonckere P, Lebacq J.
    Arch Int Physiol Biochim; 1980 Oct; 88(4):333-41. PubMed ID: 6163402
    [Abstract] [Full Text] [Related]

  • 23. Comments on the myoelastic - aerodynamic theory of phonation.
    Titze IR.
    J Speech Hear Res; 1980 Sep; 23(3):495-510. PubMed ID: 7421153
    [Abstract] [Full Text] [Related]

  • 24. Validation of theoretical models of phonation threshold pressure with data from a vocal fold mechanical replica.
    Lucero JC, Van Hirtum A, Ruty N, Cisonni J, Pelorson X.
    J Acoust Soc Am; 2009 Feb; 125(2):632-5. PubMed ID: 19206840
    [Abstract] [Full Text] [Related]

  • 25. Phonation threshold pressure: comparison of calculations and measurements taken with physical models of the vocal fold mucosa.
    Fulcher LP, Scherer RC.
    J Acoust Soc Am; 2011 Sep; 130(3):1597-605. PubMed ID: 21895097
    [Abstract] [Full Text] [Related]

  • 26. Laryngeal biomechanics: an overview of mucosal wave mechanics.
    Berke GS, Gerratt BR.
    J Voice; 1993 Jun; 7(2):123-8. PubMed ID: 8353625
    [Abstract] [Full Text] [Related]

  • 27. Theoretical analysis of maximum flow declination rate versus maximum area declination rate in phonation.
    Titze IR.
    J Speech Lang Hear Res; 2006 Apr; 49(2):439-47. PubMed ID: 16671855
    [Abstract] [Full Text] [Related]

  • 28. Modulating phonation through alteration of vocal fold medial surface contour.
    Mau T, Muhlestein J, Callahan S, Chan RW.
    Laryngoscope; 2012 Sep; 122(9):2005-14. PubMed ID: 22865592
    [Abstract] [Full Text] [Related]

  • 29.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 30.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 31.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 32.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 33. On the acoustical relevance of supraglottal flow structures to low-frequency voice production.
    Zhang Z, Neubauer J.
    J Acoust Soc Am; 2010 Dec; 128(6):EL378-83. PubMed ID: 21218861
    [Abstract] [Full Text] [Related]

  • 34. Asymmetric airflow and vibration induced by the Coanda effect in a symmetric model of the vocal folds.
    Tao C, Zhang Y, Hottinger DG, Jiang JJ.
    J Acoust Soc Am; 2007 Oct; 122(4):2270-8. PubMed ID: 17902863
    [Abstract] [Full Text] [Related]

  • 35.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 36. Vocal fold contact pressure in a three-dimensional body-cover phonation model.
    Zhang Z.
    J Acoust Soc Am; 2019 Jul; 146(1):256. PubMed ID: 31370600
    [Abstract] [Full Text] [Related]

  • 37.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 38. Characteristics of phonation onset in a two-layer vocal fold model.
    Zhang Z.
    J Acoust Soc Am; 2009 Feb; 125(2):1091-102. PubMed ID: 19206884
    [Abstract] [Full Text] [Related]

  • 39.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 40.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 13.