These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


180 related items for PubMed ID: 16643383

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Dependence of alignment direction on magnitude of strain in esophageal smooth muscle cells.
    Ritchie AC, Wijaya S, Ong WF, Zhong SP, Chian KS.
    Biotechnol Bioeng; 2009 Apr 15; 102(6):1703-11. PubMed ID: 19170241
    [Abstract] [Full Text] [Related]

  • 3. Mechano-active tissue engineering of vascular smooth muscle using pulsatile perfusion bioreactors and elastic PLCL scaffolds.
    Jeong SI, Kwon JH, Lim JI, Cho SW, Jung Y, Sung WJ, Kim SH, Kim YH, Lee YM, Kim BS, Choi CY, Kim SJ.
    Biomaterials; 2005 Apr 15; 26(12):1405-11. PubMed ID: 15482828
    [Abstract] [Full Text] [Related]

  • 4. Functional characterization of human coronary artery smooth muscle cells under cyclic mechanical strain in a degradable polyurethane scaffold.
    Sharifpoor S, Simmons CA, Labow RS, Paul Santerre J.
    Biomaterials; 2011 Jul 15; 32(21):4816-29. PubMed ID: 21463894
    [Abstract] [Full Text] [Related]

  • 5. Effects of cyclic stretch on proliferation of mesenchymal stem cells and their differentiation to smooth muscle cells.
    Ghazanfari S, Tafazzoli-Shadpour M, Shokrgozar MA.
    Biochem Biophys Res Commun; 2009 Oct 23; 388(3):601-5. PubMed ID: 19695226
    [Abstract] [Full Text] [Related]

  • 6. Construction of functional soft tissues from premodulated smooth muscle cells using a bioreactor system.
    Cha JM, Park SN, Park GO, Kim JK, Suh H.
    Artif Organs; 2006 Sep 23; 30(9):704-7. PubMed ID: 16934099
    [Abstract] [Full Text] [Related]

  • 7. A study of vascular smooth muscle cell function under cyclic mechanical loading in a polyurethane scaffold with optimized porosity.
    Sharifpoor S, Simmons CA, Labow RS, Santerre JP.
    Acta Biomater; 2010 Nov 23; 6(11):4218-28. PubMed ID: 20601230
    [Abstract] [Full Text] [Related]

  • 8. Smooth muscle alpha-actin and calponin expression and extracellular matrix production of human coronary artery smooth muscle cells in 3D scaffolds.
    Grenier S, Sandig M, Mequanint K.
    Tissue Eng Part A; 2009 Oct 23; 15(10):3001-11. PubMed ID: 19323608
    [Abstract] [Full Text] [Related]

  • 9. Tissue-engineered vascular grafts composed of marine collagen and PLGA fibers using pulsatile perfusion bioreactors.
    Jeong SI, Kim SY, Cho SK, Chong MS, Kim KS, Kim H, Lee SB, Lee YM.
    Biomaterials; 2007 Feb 23; 28(6):1115-22. PubMed ID: 17112581
    [Abstract] [Full Text] [Related]

  • 10. Interactions of coronary artery smooth muscle cells with 3D porous polyurethane scaffolds.
    Grenier S, Sandig M, Holdsworth DW, Mequanint K.
    J Biomed Mater Res A; 2009 May 23; 89(2):293-303. PubMed ID: 18431771
    [Abstract] [Full Text] [Related]

  • 11. [Experimental studies on canine bladder smooth muscle cells cultured on acellular small intestinal submucosa in vitro].
    Han P, Yang Z, Zhi W.
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2007 Dec 23; 21(12):1366-70. PubMed ID: 18277686
    [Abstract] [Full Text] [Related]

  • 12. Polyurethane biomaterials for fabricating 3D porous scaffolds and supporting vascular cells.
    Grenier S, Sandig M, Mequanint K.
    J Biomed Mater Res A; 2007 Sep 15; 82(4):802-9. PubMed ID: 17326143
    [Abstract] [Full Text] [Related]

  • 13. Polyesterurethane foam scaffold for smooth muscle cell tissue engineering.
    Danielsson C, Ruault S, Simonet M, Neuenschwander P, Frey P.
    Biomaterials; 2006 Mar 15; 27(8):1410-5. PubMed ID: 16157370
    [Abstract] [Full Text] [Related]

  • 14. Evaluation of the biocompatibility and mechanical properties of naturally derived and synthetic scaffolds for urethral reconstruction.
    Feng C, Xu YM, Fu Q, Zhu WD, Cui L, Chen J.
    J Biomed Mater Res A; 2010 Jul 15; 94(1):317-25. PubMed ID: 20166222
    [Abstract] [Full Text] [Related]

  • 15. Equibiaxial strain stimulates fibroblastic phenotype shift in smooth muscle cells in an engineered tissue model of the aortic wall.
    Butcher JT, Barrett BC, Nerem RM.
    Biomaterials; 2006 Oct 15; 27(30):5252-8. PubMed ID: 16806457
    [Abstract] [Full Text] [Related]

  • 16. Influence of channel width on alignment of smooth muscle cells by high-aspect-ratio microfabricated elastomeric cell culture scaffolds.
    Glawe JD, Hill JB, Mills DK, McShane MJ.
    J Biomed Mater Res A; 2005 Oct 01; 75(1):106-14. PubMed ID: 16052500
    [Abstract] [Full Text] [Related]

  • 17. Influence of perfusion and compression on the proliferation and differentiation of bone mesenchymal stromal cells seeded on polyurethane scaffolds.
    Liu C, Abedian R, Meister R, Haasper C, Hurschler C, Krettek C, von Lewinski G, Jagodzinski M.
    Biomaterials; 2012 Feb 01; 33(4):1052-64. PubMed ID: 22056755
    [Abstract] [Full Text] [Related]

  • 18. Tissue-engineered blood vessel graft produced by self-derived cells and allogenic acellular matrix: a functional performance and histologic study.
    Yang D, Guo T, Nie C, Morris SF.
    Ann Plast Surg; 2009 Mar 01; 62(3):297-303. PubMed ID: 19240529
    [Abstract] [Full Text] [Related]

  • 19. Effect of cyclic tensile strain on proliferation of synovial cells seeded onto synthetic ligament scaffolds--an in vitro simulation.
    Raïf el M, Seedhom BB.
    Bone; 2005 Mar 01; 36(3):433-43. PubMed ID: 15777682
    [Abstract] [Full Text] [Related]

  • 20. Cyclic strain increases fibroblast proliferation, matrix accumulation, and elastic modulus of fibroblast-seeded polyurethane constructs.
    Webb K, Hitchcock RW, Smeal RM, Li W, Gray SD, Tresco PA.
    J Biomech; 2006 Mar 01; 39(6):1136-44. PubMed ID: 16256125
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.