These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
277 related items for PubMed ID: 1664489
21. Sarcolemmal Na+-Ca2+ exchange during the development of genetically determined cardiomyopathy. Makino N, Jasmin G, Beamish RE, Dhalla NS. Biochem Biophys Res Commun; 1985 Dec 17; 133(2):491-7. PubMed ID: 3002347 [Abstract] [Full Text] [Related]
22. Mechanisms of [Ca2+]i transient decrease in cardiomyopathy of db/db type 2 diabetic mice. Pereira L, Matthes J, Schuster I, Valdivia HH, Herzig S, Richard S, Gómez AM. Diabetes; 2006 Mar 17; 55(3):608-15. PubMed ID: 16505222 [Abstract] [Full Text] [Related]
23. Empagliflozin Attenuates Myocardial Sodium and Calcium Dysregulation and Reverses Cardiac Remodeling in Streptozotocin-Induced Diabetic Rats. Lee TI, Chen YC, Lin YK, Chung CC, Lu YY, Kao YH, Chen YJ. Int J Mol Sci; 2019 Apr 04; 20(7):. PubMed ID: 30987285 [Abstract] [Full Text] [Related]
24. Evidence against the involvement of nonenzymatic glycosylation in diabetic cardiomyopathy. Ganguly PK, Thliveris JA, Mehta A. Metabolism; 1990 Jul 04; 39(7):769-73. PubMed ID: 2164131 [Abstract] [Full Text] [Related]
25. Improvement of defective sarcoplasmic reticulum Ca2+ transport in diabetic heart of transgenic rats expressing the human kallikrein-1 gene. Tschöpe C, Spillmann F, Rehfeld U, Koch M, Westermann D, Altmann C, Dendorfer A, Walther T, Bader M, Paul M, Schultheiss HP, Vetter R. FASEB J; 2004 Dec 04; 18(15):1967-9. PubMed ID: 15448111 [Abstract] [Full Text] [Related]
27. Na(+)-H+ exchange in cardiac sarcolemmal vesicles isolated from diabetic rats. Pierce GN, Ramjiawan B, Dhalla NS, Ferrari R. Am J Physiol; 1990 Jan 01; 258(1 Pt 2):H255-61. PubMed ID: 2154133 [Abstract] [Full Text] [Related]
28. Interval training normalizes cardiomyocyte function, diastolic Ca2+ control, and SR Ca2+ release synchronicity in a mouse model of diabetic cardiomyopathy. Stølen TO, Høydal MA, Kemi OJ, Catalucci D, Ceci M, Aasum E, Larsen T, Rolim N, Condorelli G, Smith GL, Wisløff U. Circ Res; 2009 Sep 11; 105(6):527-36. PubMed ID: 19679837 [Abstract] [Full Text] [Related]
29. Sarcolemmal Ca2+ transport activities in cardiac hypertrophy caused by pressure overload. Nakanishi H, Makino N, Hata T, Matsui H, Yano K, Yanaga T. Am J Physiol; 1989 Aug 11; 257(2 Pt 2):H349-56. PubMed ID: 2548404 [Abstract] [Full Text] [Related]
30. Gene expression of the cardiac Na(+)-Ca2+ exchanger in end-stage human heart failure. Studer R, Reinecke H, Bilger J, Eschenhagen T, Böhm M, Hasenfuss G, Just H, Holtz J, Drexler H. Circ Res; 1994 Sep 11; 75(3):443-53. PubMed ID: 8062418 [Abstract] [Full Text] [Related]
31. Advanced glycation end-products impair Na⁺/K⁺-ATPase activity in diabetic cardiomyopathy: role of the adenosine monophosphate-activated protein kinase/sirtuin 1 pathway. Yuan Q, Zhou QY, Liu D, Yu L, Zhan L, Li XJ, Peng HY, Zhang XL, Yuan XC. Clin Exp Pharmacol Physiol; 2014 Feb 11; 41(2):127-33. PubMed ID: 24341361 [Abstract] [Full Text] [Related]
33. Increased sarcolemmal Ca2+ transport activity in skeletal muscle of diabetic rats. Taira Y, Hata T, Ganguly PK, Elimban V, Dhalla NS. Am J Physiol; 1991 Apr 11; 260(4 Pt 1):E626-32. PubMed ID: 1850203 [Abstract] [Full Text] [Related]
34. Reduced sodium pump alpha1, alpha3, and beta1-isoform protein levels and Na+,K+-ATPase activity but unchanged Na+-Ca2+ exchanger protein levels in human heart failure. Schwinger RH, Wang J, Frank K, Müller-Ehmsen J, Brixius K, McDonough AA, Erdmann E. Circulation; 1999 Apr 27; 99(16):2105-12. PubMed ID: 10217649 [Abstract] [Full Text] [Related]
35. Sarcolemmal Na+-Ca2+ exchange activity in hearts subjected to hypoxia reoxygenation. Dixon IM, Eyolfson DA, Dhalla NS. Am J Physiol; 1987 Nov 27; 253(5 Pt 2):H1026-34. PubMed ID: 3688247 [Abstract] [Full Text] [Related]
36. Altered cytosolic calcium homeostasis in rat cardiac myocytes in CRF. Zhang YB, Smogorzewski M, Ni Z, Massry SG. Kidney Int; 1994 Apr 27; 45(4):1113-9. PubMed ID: 8007581 [Abstract] [Full Text] [Related]
37. Increased inhibition of SERCA2 by phospholamban in the type I diabetic heart. Vasanji Z, Dhalla NS, Netticadan T. Mol Cell Biochem; 2004 Jun 27; 261(1-2):245-9. PubMed ID: 15362510 [Abstract] [Full Text] [Related]
38. Sorbitol accumulation in heart: implication for diabetic cardiomyopathy. Nakada T, Kwee IL. Life Sci; 1989 Jun 27; 45(25):2491-3. PubMed ID: 2607890 [Abstract] [Full Text] [Related]
39. Lipotoxicity in type 2 diabetic cardiomyopathy. van de Weijer T, Schrauwen-Hinderling VB, Schrauwen P. Cardiovasc Res; 2011 Oct 01; 92(1):10-8. PubMed ID: 21803867 [Abstract] [Full Text] [Related]
40. Sarcoplasmic reticulum Ca2+ ATPase pump is a major regulator of glucose transport in the healthy and diabetic heart. Waller AP, Kalyanasundaram A, Hayes S, Periasamy M, Lacombe VA. Biochim Biophys Acta; 2015 May 01; 1852(5):873-81. PubMed ID: 25615793 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]