These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
134 related items for PubMed ID: 16645309
1. Prokaryotic Kdp-ATPase: recent insights into the structure and function of KdpB. Haupt M, Bramkamp M, Coles M, Kessler H, Altendorf K. J Mol Microbiol Biotechnol; 2005; 10(2-4):120-31. PubMed ID: 16645309 [Abstract] [Full Text] [Related]
2. Inter-domain motions of the N-domain of the KdpFABC complex, a P-type ATPase, are not driven by ATP-induced conformational changes. Haupt M, Bramkamp M, Coles M, Altendorf K, Kessler H. J Mol Biol; 2004 Oct 01; 342(5):1547-58. PubMed ID: 15364580 [Abstract] [Full Text] [Related]
3. Functional modules of KdpB, the catalytic subunit of the Kdp-ATPase from Escherichia coli. Bramkamp M, Altendorf K. Biochemistry; 2004 Sep 28; 43(38):12289-96. PubMed ID: 15379567 [Abstract] [Full Text] [Related]
4. The KdpC subunit of the Escherichia coli K+-transporting KdpB P-type ATPase acts as a catalytic chaperone. Irzik K, Pfrötzschner J, Goss T, Ahnert F, Haupt M, Greie JC. FEBS J; 2011 Sep 28; 278(17):3041-53. PubMed ID: 21711450 [Abstract] [Full Text] [Related]
5. Single amino acid substitution in the putative transmembrane helix V in KdpB of the KdpFABC complex of Escherichia coli uncouples ATPase activity and ion transport. Bramkamp M, Altendorf K. Biochemistry; 2005 Jun 14; 44(23):8260-6. PubMed ID: 15938615 [Abstract] [Full Text] [Related]
6. The holo-form of the nucleotide binding domain of the KdpFABC complex from Escherichia coli reveals a new binding mode. Haupt M, Bramkamp M, Heller M, Coles M, Deckers-Hebestreit G, Herkenhoff-Hesselmann B, Altendorf K, Kessler H. J Biol Chem; 2006 Apr 07; 281(14):9641-9. PubMed ID: 16354672 [Abstract] [Full Text] [Related]
7. The conserved dipole in transmembrane helix 5 of KdpB in the Escherichia coli KdpFABC P-type ATPase is crucial for coupling and the electrogenic K+-translocation step. Becker D, Fendler K, Altendorf K, Greie JC. Biochemistry; 2007 Dec 04; 46(48):13920-8. PubMed ID: 17994765 [Abstract] [Full Text] [Related]
8. ATP binding properties of the soluble part of the KdpC subunit from the Escherichia coli K(+)-transporting KdpFABC P-type ATPase. Ahnert F, Schmid R, Altendorf K, Greie JC. Biochemistry; 2006 Sep 12; 45(36):11038-46. PubMed ID: 16953591 [Abstract] [Full Text] [Related]
9. FITC binding site and p-nitrophenyl phosphatase activity of the Kdp-ATPase of Escherichia coli. Bramkamp M, Gassel M, Altendorf K. Biochemistry; 2004 Apr 20; 43(15):4559-67. PubMed ID: 15078102 [Abstract] [Full Text] [Related]
10. Common patterns and unique features of P-type ATPases: a comparative view on the KdpFABC complex from Escherichia coli (Review). Bramkamp M, Altendorf K, Greie JC. Mol Membr Biol; 2007 Apr 20; 24(5-6):375-86. PubMed ID: 17710642 [Abstract] [Full Text] [Related]
11. Solution structure of the KdpFABC P-type ATPase from Escherichia coli by electron microscopic single particle analysis. Heitkamp T, Böttcher B, Greie JC. J Struct Biol; 2009 Jun 20; 166(3):295-302. PubMed ID: 19285138 [Abstract] [Full Text] [Related]
12. The KdpFABC complex from Escherichia coli: a chimeric K+ transporter merging ion pumps with ion channels. Greie JC. Eur J Cell Biol; 2011 Sep 20; 90(9):705-10. PubMed ID: 21684627 [Abstract] [Full Text] [Related]
13. The structure and function of heavy metal transport P1B-ATPases. Argüello JM, Eren E, González-Guerrero M. Biometals; 2007 Jun 20; 20(3-4):233-48. PubMed ID: 17219055 [Abstract] [Full Text] [Related]
14. Mechanistic analysis of the pump cycle of the KdpFABC P-type ATPase. Damnjanovic B, Weber A, Potschies M, Greie JC, Apell HJ. Biochemistry; 2013 Aug 20; 52(33):5563-76. PubMed ID: 23930894 [Abstract] [Full Text] [Related]
15. Deciphering ion transport and ATPase coupling in the intersubunit tunnel of KdpFABC. Silberberg JM, Corey RA, Hielkema L, Stock C, Stansfeld PJ, Paulino C, Hänelt I. Nat Commun; 2021 Aug 24; 12(1):5098. PubMed ID: 34429416 [Abstract] [Full Text] [Related]
16. The structure of Mg-ATPase nucleotide-binding domain at 1.6 A resolution reveals a unique ATP-binding motif. Håkansson KO. Acta Crystallogr D Biol Crystallogr; 2009 Nov 24; 65(Pt 11):1181-6. PubMed ID: 19923713 [Abstract] [Full Text] [Related]
17. Mutational analysis of charged residues in the putative KdpB-TM5 domain of the Kdp-ATPase of Escherichia coli. Bramkamp M, Altendorf K. Ann N Y Acad Sci; 2003 Apr 24; 986():351-3. PubMed ID: 12763849 [No Abstract] [Full Text] [Related]
18. Membrane structure of CtrA3, a copper-transporting P-type-ATPase from Aquifex aeolicus. Chintalapati S, Al Kurdi R, van Scheltinga AC, Kühlbrandt W. J Mol Biol; 2008 May 02; 378(3):581-95. PubMed ID: 18374940 [Abstract] [Full Text] [Related]
19. Structure and mechanism of Escherichia coli RecA ATPase. Bell CE. Mol Microbiol; 2005 Oct 02; 58(2):358-66. PubMed ID: 16194225 [Abstract] [Full Text] [Related]
20. On allosteric modulation of P-type Cu(+)-ATPases. Mattle D, Sitsel O, Autzen HE, Meloni G, Gourdon P, Nissen P. J Mol Biol; 2013 Jul 10; 425(13):2299-308. PubMed ID: 23500486 [Abstract] [Full Text] [Related] Page: [Next] [New Search]