These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
134 related items for PubMed ID: 16645309
21. Solution structure of the N-domain of Wilson disease protein: distinct nucleotide-binding environment and effects of disease mutations. Dmitriev O, Tsivkovskii R, Abildgaard F, Morgan CT, Markley JL, Lutsenko S. Proc Natl Acad Sci U S A; 2006 Apr 04; 103(14):5302-7. PubMed ID: 16567646 [Abstract] [Full Text] [Related]
22. K+-translocating KdpFABC P-type ATPase from Escherichia coli acts as a functional and structural dimer. Heitkamp T, Kalinowski R, Böttcher B, Börsch M, Altendorf K, Greie JC. Biochemistry; 2008 Mar 18; 47(11):3564-75. PubMed ID: 18298081 [Abstract] [Full Text] [Related]
23. A molecular understanding of the catalytic cycle of the nucleotide-binding domain of the ABC transporter HlyB. Zaitseva J, Jenewein S, Oswald C, Jumpertz T, Holland IB, Schmitt L. Biochem Soc Trans; 2005 Nov 18; 33(Pt 5):990-5. PubMed ID: 16246029 [Abstract] [Full Text] [Related]
24. Structure of the ATP binding domain from the Archaeoglobus fulgidus Cu+-ATPase. Sazinsky MH, Mandal AK, Argüello JM, Rosenzweig AC. J Biol Chem; 2006 Apr 21; 281(16):11161-6. PubMed ID: 16495228 [Abstract] [Full Text] [Related]
27. Modulation and Functional Role of the Orientations of the N- and P-Domains of Cu+ -Transporting ATPase along the Ion Transport Cycle. Meng D, Bruschweiler-Li L, Zhang F, Brüschweiler R. Biochemistry; 2015 Aug 18; 54(32):5095-102. PubMed ID: 26196187 [Abstract] [Full Text] [Related]
32. Structural basis for potassium transport in prokaryotes by KdpFABC. Sweet ME, Larsen C, Zhang X, Schlame M, Pedersen BP, Stokes DL. Proc Natl Acad Sci U S A; 2021 Jul 20; 118(29):. PubMed ID: 34272288 [Abstract] [Full Text] [Related]
33. The phosphorylation site of the Kdp-ATPase of Escherichia coli: site-directed mutagenesis of the aspartic acid residues 300 and 307 of the KdpB subunit. Puppe W, Siebers A, Altendorf K. Mol Microbiol; 1992 Dec 20; 6(23):3511-20. PubMed ID: 1474895 [Abstract] [Full Text] [Related]
34. 1H, 13C and 15N resonance assignment of the nucleotide binding domain of KdpB from Escherichia coli. Haupt M, Coles M, Truffault V, Bramkamp M, Altendorf K, Kessler H. J Biomol NMR; 2004 Jul 20; 29(3):437-8. PubMed ID: 15213457 [No Abstract] [Full Text] [Related]
35. The K+-translocating KdpFABC complex from Escherichia coli: a P-type ATPase with unique features. Greie JC, Altendorf K. J Bioenerg Biomembr; 2007 Dec 20; 39(5-6):397-402. PubMed ID: 18058005 [Abstract] [Full Text] [Related]
36. The nucleotide-binding domain of the Zn2+-transporting P-type ATPase from Escherichia coli carries a glycine motif that may be involved in binding of ATP. Okkeri J, Laakkonen L, Haltia T. Biochem J; 2004 Jan 01; 377(Pt 1):95-105. PubMed ID: 14510639 [Abstract] [Full Text] [Related]
37. Rebuilt AAA + motors reveal operating principles for ATP-fuelled machines. Martin A, Baker TA, Sauer RT. Nature; 2005 Oct 20; 437(7062):1115-20. PubMed ID: 16237435 [Abstract] [Full Text] [Related]
38. The p-type ATPase superfamily. Chan H, Babayan V, Blyumin E, Gandhi C, Hak K, Harake D, Kumar K, Lee P, Li TT, Liu HY, Lo TC, Meyer CJ, Stanford S, Zamora KS, Saier MH. J Mol Microbiol Biotechnol; 2010 Oct 20; 19(1-2):5-104. PubMed ID: 20962537 [Abstract] [Full Text] [Related]
39. Functional roles of metal binding domains of the Archaeoglobus fulgidus Cu(+)-ATPase CopA. Mandal AK, Argüello JM. Biochemistry; 2003 Sep 23; 42(37):11040-7. PubMed ID: 12974640 [Abstract] [Full Text] [Related]
40. A repeated coiled-coil interruption in the Escherichia coli condensin MukB. Weitzel CS, Waldman VM, Graham TA, Oakley MG. J Mol Biol; 2011 Dec 09; 414(4):578-95. PubMed ID: 22041452 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]