These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
136 related items for PubMed ID: 16648892
1. The importance of the Thr17 residue of phospholamban as a phosphorylation site under physiological and pathological conditions. Mattiazzi A, Mundiña-Weilenmann C, Vittone L, Said M, Kranias EG. Braz J Med Biol Res; 2006 May; 39(5):563-72. PubMed ID: 16648892 [Abstract] [Full Text] [Related]
2. Phospholamban phosphorylation by CaMKII under pathophysiological conditions. Vittone L, Mundina-Weilenmann C, Mattiazzi A. Front Biosci; 2008 May 01; 13():5988-6005. PubMed ID: 18508637 [Abstract] [Full Text] [Related]
3. Role of phospholamban phosphorylation on Thr17 in cardiac physiological and pathological conditions. Mattiazzi A, Mundiña-Weilenmann C, Guoxiang C, Vittone L, Kranias E. Cardiovasc Res; 2005 Dec 01; 68(3):366-75. PubMed ID: 16226237 [Abstract] [Full Text] [Related]
4. Reduced sarcoplasmic reticulum Ca2+ -ATPase activity and dephosphorylated phospholamban contribute to contractile dysfunction in human hibernating myocardium. Nef HM, Möllmann H, Skwara W, Bölck B, Schwinger RH, Hamm Ch, Kostin S, Schaper J, Elsässer A. Mol Cell Biochem; 2006 Jan 01; 282(1-2):53-63. PubMed ID: 16317512 [Abstract] [Full Text] [Related]
5. Role of dual-site phospholamban phosphorylation in the stunned heart: insights from phospholamban site-specific mutants. Said M, Vittone L, Mundina-Weilenmann C, Ferrero P, Kranias EG, Mattiazzi A. Am J Physiol Heart Circ Physiol; 2003 Sep 01; 285(3):H1198-205. PubMed ID: 12763747 [Abstract] [Full Text] [Related]
6. Phosphorylation of phospholamban in ischemia-reperfusion injury: functional role of Thr17 residue. Mattiazzi A, Mundiña-Weilenmann C, Vittone L, Said M. Mol Cell Biochem; 2004 Aug 01; 263(1-2):131-6. PubMed ID: 15524173 [Abstract] [Full Text] [Related]
7. Phospholamban and cardiac function: a comparative perspective in vertebrates. Cerra MC, Imbrogno S. Acta Physiol (Oxf); 2012 May 01; 205(1):9-25. PubMed ID: 22463608 [Abstract] [Full Text] [Related]
8. Phospholamban phosphorylation sites enhance the recovery of intracellular Ca2+ after perfusion arrest in isolated, perfused mouse heart. Valverde CA, Mundiña-Weilenmann C, Reyes M, Kranias EG, Escobar AL, Mattiazzi A. Cardiovasc Res; 2006 May 01; 70(2):335-45. PubMed ID: 16516179 [Abstract] [Full Text] [Related]
9. Ser16 prevails over Thr17 phospholamban phosphorylation in the beta-adrenergic regulation of cardiac relaxation. Kuschel M, Karczewski P, Hempel P, Schlegel WP, Krause EG, Bartel S. Am J Physiol; 1999 May 01; 276(5):H1625-33. PubMed ID: 10330247 [Abstract] [Full Text] [Related]
10. Frequency-dependent acceleration of relaxation in mammalian heart: a property not relying on phospholamban and SERCA2a phosphorylation. Valverde CA, Mundiña-Weilenmann C, Said M, Ferrero P, Vittone L, Salas M, Palomeque J, Petroff MV, Mattiazzi A. J Physiol; 2005 Feb 01; 562(Pt 3):801-13. PubMed ID: 15528241 [Abstract] [Full Text] [Related]
11. Ser16-, but not Thr17-phosphorylation of phospholamban influences frequency-dependent force generation in human myocardium. Brixius K, Wollmer A, Bölck B, Mehlhorn U, Schwinger RH. Pflugers Arch; 2003 Nov 01; 447(2):150-7. PubMed ID: 14530977 [Abstract] [Full Text] [Related]
12. Small heat shock protein 20 interacts with protein phosphatase-1 and enhances sarcoplasmic reticulum calcium cycling. Qian J, Vafiadaki E, Florea SM, Singh VP, Song W, Lam CK, Wang Y, Yuan Q, Pritchard TJ, Cai W, Haghighi K, Rodriguez P, Wang HS, Sanoudou D, Fan GC, Kranias EG. Circ Res; 2011 Jun 10; 108(12):1429-38. PubMed ID: 21493896 [Abstract] [Full Text] [Related]
13. Phospholamban pentamerization increases sensitivity and dynamic range of cardiac relaxation. Funk F, Kronenbitter A, Hackert K, Oebbeke M, Klebe G, Barth M, Koch D, Schmitt JP. Cardiovasc Res; 2023 Jul 04; 119(7):1568-1582. PubMed ID: 36869774 [Abstract] [Full Text] [Related]
14. The role of CaMKII regulation of phospholamban activity in heart disease. Mattiazzi A, Kranias EG. Front Pharmacol; 2014 Jul 04; 5():5. PubMed ID: 24550830 [Abstract] [Full Text] [Related]
15. Acidosis alters the phosphorylation of Ser16 and Thr17 of phospholamban in rat cardiac muscle. Hulme JT, Colyer J, Orchard CH. Pflugers Arch; 1997 Aug 04; 434(4):475-83. PubMed ID: 9211815 [Abstract] [Full Text] [Related]
16. Functional interplay between dual site phospholambam phosphorylation: insights from genetically altered mouse models. Chu G, Kranias EG. Basic Res Cardiol; 2002 Aug 04; 97 Suppl 1():I43-8. PubMed ID: 12479233 [Abstract] [Full Text] [Related]
17. Alterations of phospholamban function can exhibit cardiotoxic effects independent of excessive sarcoplasmic reticulum Ca2+-ATPase inhibition. Schmitt JP, Ahmad F, Lorenz K, Hein L, Schulz S, Asahi M, Maclennan DH, Seidman CE, Seidman JG, Lohse MJ. Circulation; 2009 Jan 27; 119(3):436-44. PubMed ID: 19139388 [Abstract] [Full Text] [Related]
18. Phosphorylation of phospholamban at threonine-17 in the absence and presence of beta-adrenergic stimulation in neonatal rat cardiomyocytes. Bartel S, Vetter D, Schlegel WP, Wallukat G, Krause EG, Karczewski P. J Mol Cell Cardiol; 2000 Dec 27; 32(12):2173-85. PubMed ID: 11112993 [Abstract] [Full Text] [Related]
19. Loss of Protein Kinase Novel 1 (PKN1) is associated with mild systolic and diastolic contractile dysfunction, increased phospholamban Thr17 phosphorylation, and exacerbated ischaemia-reperfusion injury. Francois AA, Obasanjo-Blackshire K, Clark JE, Boguslavskyi A, Holt MR, Parker PJ, Marber MS, Heads RJ. Cardiovasc Res; 2018 Jan 01; 114(1):138-157. PubMed ID: 29045568 [Abstract] [Full Text] [Related]
20. The antiapoptotic protein HAX-1 mediates half of phospholamban's inhibitory activity on calcium cycling and contractility in the heart. Bidwell PA, Haghighi K, Kranias EG. J Biol Chem; 2018 Jan 05; 293(1):359-367. PubMed ID: 29150445 [Abstract] [Full Text] [Related] Page: [Next] [New Search]