These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


178 related items for PubMed ID: 16650

  • 1. Cotransport of phosphate and sodium by yeast.
    Roomans GM, Blasco F, Borst-Pauwels GW.
    Biochim Biophys Acta; 1977 May 16; 467(1):65-71. PubMed ID: 16650
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Interaction of cations with phosphate uptake by Saccharomyces cerevisiae. Effects of surface potential.
    Roomans GM, Borst-Pauwels GW.
    Biochem J; 1979 Mar 15; 178(3):521-7. PubMed ID: 36883
    [Abstract] [Full Text] [Related]

  • 4. Kinetics of Ca2+ and Sr2+ uptake by yeast. Effects of pH, cations and phosphate.
    Roomans GM, Theuvenet AP, van den Berg TP, Borst-Pauwels GW.
    Biochim Biophys Acta; 1979 Feb 20; 551(1):187-96. PubMed ID: 34435
    [Abstract] [Full Text] [Related]

  • 5. Interactions Between Monovalent Cations and Nutrient Homeostasis.
    Canadell D, Ariño J.
    Adv Exp Med Biol; 2016 Feb 20; 892():271-289. PubMed ID: 26721278
    [Abstract] [Full Text] [Related]

  • 6. Phosphate transport by isolated renal brush border vesicles.
    Hoffmann N, Thees M, Kinne R.
    Pflugers Arch; 1976 Mar 30; 362(2):147-56. PubMed ID: 4766
    [Abstract] [Full Text] [Related]

  • 7. Interaction of monovalent cations with Rb+ and Na+ uptake in yeast.
    Derks WJ, Borst-Pauwels GW.
    Biochim Biophys Acta; 1980 Mar 13; 596(3):381-92. PubMed ID: 6988007
    [Abstract] [Full Text] [Related]

  • 8. Characterization of Na+-dependent phosphate uptake in cultured kidney cells (JTC-12) from monkey.
    Takuwa Y, Ogata E.
    Biochem J; 1985 Sep 15; 230(3):715-21. PubMed ID: 3933482
    [Abstract] [Full Text] [Related]

  • 9. DISCRIMINATION BETWEEN ALKALI METAL CATIONS BY YEAST. I. EFFECT OF PH ON UPTAKE.
    ARMSTRONG WM, ROTHSTEIN A.
    J Gen Physiol; 1964 Sep 15; 48(1):61-71. PubMed ID: 14212150
    [Abstract] [Full Text] [Related]

  • 10. Sodium-dependent phosphate transport by apical membrane vesicles from a cultured renal epithelial cell line (LLC-PK1).
    Brown CD, Bodmer M, Biber J, Murer H.
    Biochim Biophys Acta; 1984 Jan 25; 769(2):471-8. PubMed ID: 6696895
    [Abstract] [Full Text] [Related]

  • 11. Ion transport in yeast.
    Borst-Pauwels GW.
    Biochim Biophys Acta; 1981 Dec 25; 650(2-3):88-127. PubMed ID: 6277372
    [No Abstract] [Full Text] [Related]

  • 12. Examination of the mechanism of Na+/phosphate cotransport. Use of fluorophosphate and the nature of cotransporter functional asymmetry.
    Peerce BE, Kiesling C.
    Miner Electrolyte Metab; 1990 Dec 25; 16(2-3):125-9. PubMed ID: 2250618
    [Abstract] [Full Text] [Related]

  • 13. Passive rubidium fluxes mediated by Na-K-ATPase reconstituted into phospholipid vesicles when ATP- and phosphate-free.
    Karlish SJ, Stein WD.
    J Physiol; 1982 Jul 25; 328():295-316. PubMed ID: 6290646
    [Abstract] [Full Text] [Related]

  • 14. Kinetical parameters of monovalent cation uptake in yeast calculated on accounting for the mutual interaction of cation uptake and membrane potential.
    Borst-Pauwels GW.
    Biochim Biophys Acta; 1993 Nov 07; 1152(2):201-6. PubMed ID: 8218320
    [Abstract] [Full Text] [Related]

  • 15. A novel alkali-tolerant Yarrowia lipolytica strain for dissecting Na+-coupled phosphate transport systems in yeasts.
    Zvyagilskaya R, Persson BL.
    Cell Biol Int; 2005 Jan 07; 29(1):87-94. PubMed ID: 15763505
    [Abstract] [Full Text] [Related]

  • 16. Effect of pH on phosphate transport into intestinal brush-border membrane vesicles.
    Danisi G, Murer H, Straub RW.
    Am J Physiol; 1984 Feb 07; 246(2 Pt 1):G180-6. PubMed ID: 6320675
    [Abstract] [Full Text] [Related]

  • 17. Activation of the potassium uptake system during fermentation in Saccharomyces cerevisiae.
    Ramos J, Haro R, Alijo R, Rodríguez-Navarro A.
    J Bacteriol; 1992 Mar 07; 174(6):2025-7. PubMed ID: 1532175
    [Abstract] [Full Text] [Related]

  • 18. Characterization of the Pho89 phosphate transporter by functional hyperexpression in Saccharomyces cerevisiae.
    Zvyagilskaya RA, Lundh F, Samyn D, Pattison-Granberg J, Mouillon JM, Popova Y, Thevelein JM, Persson BL.
    FEMS Yeast Res; 2008 Aug 07; 8(5):685-96. PubMed ID: 18625026
    [Abstract] [Full Text] [Related]

  • 19. [Genetic and biochemical study of yeast acid phosphatases. XI. Gene ACP80 controls inorganic phosphate transport].
    Sambuk EV, Alenin VV, Kozhin SA.
    Genetika; 1985 Sep 07; 21(9):1449-54. PubMed ID: 3905510
    [Abstract] [Full Text] [Related]

  • 20. The active transport of phosphate into the yeast cell.
    GOODMAN J, ROTHSTEIN A.
    J Gen Physiol; 1957 Jul 20; 40(6):915-23. PubMed ID: 13439168
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.