These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
170 related items for PubMed ID: 16650498
1. Dehydrogenation of ribitol with Gluconobacter oxydans: production and stability of L-ribulose. De Muynck C, Pereira C, Soetaert W, Vandamme E. J Biotechnol; 2006 Sep 18; 125(3):408-15. PubMed ID: 16650498 [Abstract] [Full Text] [Related]
2. Production of L-ribulose by dehydrogenation of ribitol with Gluconobacter oxydans. De Muynck C, Pereira C, Soetaert W, Vandamme E. Commun Agric Appl Biol Sci; 2005 Sep 18; 70(2):101-4. PubMed ID: 16366284 [No Abstract] [Full Text] [Related]
3. Growth characteristics and oxidative capacity of Acetobacter aceti IFO 3281: implications for L-ribulose production. Kylmä AK, Granström T, Leisola M. Appl Microbiol Biotechnol; 2004 Feb 18; 63(5):584-91. PubMed ID: 12898066 [Abstract] [Full Text] [Related]
4. Membrane-bound sugar alcohol dehydrogenase in acetic acid bacteria catalyzes L-ribulose formation and NAD-dependent ribitol dehydrogenase is independent of the oxidative fermentation. Adachi O, Fujii Y, Ano Y, Moonmangmee D, Toyama H, Shinagawa E, Theeragool G, Lotong N, Matsushita K. Biosci Biotechnol Biochem; 2001 Jan 18; 65(1):115-25. PubMed ID: 11272814 [Abstract] [Full Text] [Related]
7. Characterization of a whole-cell catalyst co-expressing glycerol dehydrogenase and glucose dehydrogenase and its application in the synthesis of L-glyceraldehyde. Richter N, Neumann M, Liese A, Wohlgemuth R, Weckbecker A, Eggert T, Hummel W. Biotechnol Bioeng; 2010 Jul 01; 106(4):541-52. PubMed ID: 20198657 [Abstract] [Full Text] [Related]
8. High-yield 5-keto-D-gluconic acid formation is mediated by soluble and membrane-bound gluconate-5-dehydrogenases of Gluconobacter oxydans. Merfort M, Herrmann U, Bringer-Meyer S, Sahm H. Appl Microbiol Biotechnol; 2006 Nov 01; 73(2):443-51. PubMed ID: 16820953 [Abstract] [Full Text] [Related]
10. Glucose oxidation by Gluconobacter oxydans: characterization in shaking-flasks, scale-up and optimization of the pH profile. Silberbach M, Maier B, Zimmermann M, Büchs J. Appl Microbiol Biotechnol; 2003 Jul 01; 62(1):92-8. PubMed ID: 12835926 [Abstract] [Full Text] [Related]
11. Evaluation of pentitol metabolism in mammalian tissues provides new insight into disorders of human sugar metabolism. Huck JH, Roos B, Jakobs C, van der Knaap MS, Verhoeven NM. Mol Genet Metab; 2004 Jul 01; 82(3):231-7. PubMed ID: 15234337 [Abstract] [Full Text] [Related]
13. Characterisation of a recombinant NADP-dependent glycerol dehydrogenase from Gluconobacter oxydans and its application in the production of L-glyceraldehyde. Richter N, Neumann M, Liese A, Wohlgemuth R, Eggert T, Hummel W. Chembiochem; 2009 Jul 20; 10(11):1888-96. PubMed ID: 19579248 [Abstract] [Full Text] [Related]
18. Molecular cloning and functional expression of d-arabitol dehydrogenase gene from Gluconobacter oxydans in Escherichia coli. Cheng H, Jiang N, Shen A, Feng Y. FEMS Microbiol Lett; 2005 Nov 01; 252(1):35-42. PubMed ID: 16165327 [Abstract] [Full Text] [Related]
19. Optimized synthesis of L-sorbose by C(5)-dehydrogenation of D-sorbitol with Gluconobacter oxydans. De Wulf P, Soetaert W, Vandamme EJ. Biotechnol Bioeng; 2000 Aug 05; 69(3):339-43. PubMed ID: 10861414 [Abstract] [Full Text] [Related]
20. Three-factor response surface optimization of the production of dextran dextrinase by Gluconobacter oxydans. Naessens M, Vercauteren R, Vandamme EJ. Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet; 2001 Aug 05; 66(3a):303-6. PubMed ID: 15954607 [Abstract] [Full Text] [Related] Page: [Next] [New Search]