These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
59 related items for PubMed ID: 1666197
1. Activation of N-type calcium channels by stannous chloride at frog motor nerve terminals. Hattori T, Maehashi H. Res Commun Chem Pathol Pharmacol; 1991 Oct; 74(1):125-8. PubMed ID: 1666197 [Abstract] [Full Text] [Related]
2. Interaction between stannous chloride and calcium channel blockers in frog neuromuscular transmission. Hattori T, Maehashi H. Res Commun Chem Pathol Pharmacol; 1992 Feb; 75(2):243-6. PubMed ID: 1315065 [Abstract] [Full Text] [Related]
3. Evidence for enhancement of calcium inward current by stannous chloride at frog motor nerve terminals. Hattori T, Maehashi H. Res Commun Chem Pathol Pharmacol; 1990 Sep; 69(3):369-72. PubMed ID: 2173086 [Abstract] [Full Text] [Related]
4. Augmentation of calcium influx by stannous chloride at mouse motor nerve terminals. Hattori T, Maehashi H. Res Commun Chem Pathol Pharmacol; 1994 May; 84(2):253-6. PubMed ID: 8091010 [Abstract] [Full Text] [Related]
5. Participation of calcium ions in stannous chloride-induced facilitation of transmitter release from frog motor nerve terminals. Hattori T, Maehashi H. Res Commun Chem Pathol Pharmacol; 1990 May; 68(2):267-70. PubMed ID: 1972290 [Abstract] [Full Text] [Related]
6. Potentiation by stannous chloride of calcium entry into osteoblastic MC3T3-E1 cells through voltage-dependent L-type calcium channels. Hattori T, Maehashi H, Miyazawa T, Naito M. Cell Calcium; 2001 Jul; 30(1):67-72. PubMed ID: 11396989 [Abstract] [Full Text] [Related]
7. Effects of Ca2+ channel blocker neurotoxins on transmitter release and presynaptic currents at the mouse neuromuscular junction. Katz E, Protti DA, Ferro PA, Rosato Siri MD, Uchitel OD. Br J Pharmacol; 1997 Aug; 121(8):1531-40. PubMed ID: 9283685 [Abstract] [Full Text] [Related]
8. Stannous chloride-induced increase in calcium entry into motor nerve terminals of the frog. Hattori T, Maehashi H. Eur J Pharmacol; 1989 Aug 03; 166(3):527-30. PubMed ID: 2572431 [Abstract] [Full Text] [Related]
9. Three types of voltage-dependent calcium currents in cultured human neuroblastoma cells. Kito M, Maehara M, Watanabe K. Nagoya J Med Sci; 1995 Mar 03; 58(1-2):29-33. PubMed ID: 7659144 [Abstract] [Full Text] [Related]
10. Effects of N- and L-type calcium channel antagonists and (+/-)-Bay K8644 on nerve-induced catecholamine secretion from bovine perfused adrenal glands. O'Farrell M, Ziogas J, Marley PD. Br J Pharmacol; 1997 Jun 03; 121(3):381-8. PubMed ID: 9179377 [Abstract] [Full Text] [Related]
11. Calcium channels involved in K+- and veratridine-induced increase of cytosolic calcium concentration in human cerebral cortical synaptosomes. Meder W, Fink K, Zentner J, Göthert M. J Pharmacol Exp Ther; 1999 Sep 03; 290(3):1126-31. PubMed ID: 10454486 [Abstract] [Full Text] [Related]
12. Ca2+ entry via P/Q-type Ca2+ channels and the Na+/Ca2+ exchanger in rat and human neocortical synaptosomes. Fink K, Meder WP, Clusmann H, Göthert M. Naunyn Schmiedebergs Arch Pharmacol; 2002 Nov 03; 366(5):458-63. PubMed ID: 12382075 [Abstract] [Full Text] [Related]
13. N-Type Ca(2+) channels trigger release of excitatory and inhibitory neurotransmitter from nerve endings in canine bronchi. Johri AM, Janssen LJ. J Pharmacol Exp Ther; 1999 Aug 03; 290(2):847-53. PubMed ID: 10411601 [Abstract] [Full Text] [Related]
14. Acetylcholine release at neuromuscular junctions of adult tottering mice is controlled by N-(cav2.2) and R-type (cav2.3) but not L-type (cav1.2) Ca2+ channels. Pardo NE, Hajela RK, Atchison WD. J Pharmacol Exp Ther; 2006 Dec 03; 319(3):1009-20. PubMed ID: 16982704 [Abstract] [Full Text] [Related]
15. Facilitation of transmitter release from mouse motor nerve terminals by stannous chloride. Hattori T, Maehashi H. Res Commun Chem Pathol Pharmacol; 1993 Oct 03; 82(1):121-4. PubMed ID: 7903812 [Abstract] [Full Text] [Related]
16. Functional expression of a rapidly inactivating neuronal calcium channel. Ellinor PT, Zhang JF, Randall AD, Zhou M, Schwarz TL, Tsien RW, Horne WA. Nature; 1993 Jun 03; 363(6428):455-8. PubMed ID: 8389006 [Abstract] [Full Text] [Related]
17. Characterization of presynaptic calcium channels with omega-conotoxin MVIIC and omega-grammotoxin SIA: role for a resistant calcium channel type in neurosecretion. Turner TJ, Lampe RA, Dunlap K. Mol Pharmacol; 1995 Feb 03; 47(2):348-53. PubMed ID: 7870043 [Abstract] [Full Text] [Related]
18. Interaction of Ca-channel blockers and high pressure at the crustacean neuromuscular junction. Grossman Y, Colton JS, Gilman SC. Neurosci Lett; 1991 Apr 15; 125(1):53-6. PubMed ID: 1857559 [Abstract] [Full Text] [Related]
19. Omega-conotoxin blockade of calcium currents in cultured neonatal rat cardiomyocytes: different action on EGTA-modified calcium channels. Savtchenko AN, Verkhratsky AN. Gen Physiol Biophys; 1990 Apr 15; 9(2):147-65. PubMed ID: 2162796 [Abstract] [Full Text] [Related]
20. Adenosine 3',5'-cyclic monophosphate-stimulated Ca++ efflux and acetylcholine release in ileal myenteric plexus are mediated by N-type Ca++ channels: inhibition by the kappa opioid receptor agonist. Kojima Y, Tsunoda Y, Owyang C. J Pharmacol Exp Ther; 1997 Jul 15; 282(1):403-9. PubMed ID: 9223581 [Abstract] [Full Text] [Related] Page: [Next] [New Search]