These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


161 related items for PubMed ID: 16671692

  • 1. Sequence dependence of charge transport properties of DNA.
    Nogues C, Cohen SR, Daube S, Apter N, Naaman R.
    J Phys Chem B; 2006 May 11; 110(18):8910-3. PubMed ID: 16671692
    [Abstract] [Full Text] [Related]

  • 2. Effect of GC base pairs on charge transfer through DNA hairpins: the importance of electrostatic interactions.
    Grozema FC, Tonzani S, Berlin YA, Schatz GC, Siebbeles LD, Ratner MA.
    J Am Chem Soc; 2009 Oct 14; 131(40):14204-5. PubMed ID: 19764757
    [Abstract] [Full Text] [Related]

  • 3. Binding of gold clusters with DNA base pairs: a density functional study of neutral and anionic GC-Aun and AT-Aun (n = 4, 8) complexes.
    Kumar A, Mishra PC, Suhai S.
    J Phys Chem A; 2006 Jun 22; 110(24):7719-27. PubMed ID: 16774220
    [Abstract] [Full Text] [Related]

  • 4. Premelting thermal fluctuational interbase hydrogen-bond disrupted states of a B-DNA guanine-cytosine base pair: significance for amino and imino proton exchange.
    Chen YZ, Zhuang W, Prohofsky EW.
    Biopolymers; 1991 Oct 22; 31(11):1273-81. PubMed ID: 1663798
    [Abstract] [Full Text] [Related]

  • 5. Rupture force between the third strand and the double strand within a triplex DNA.
    Ling L, Butt HJ, Berger R.
    J Am Chem Soc; 2004 Nov 03; 126(43):13992-7. PubMed ID: 15506761
    [Abstract] [Full Text] [Related]

  • 6. Metal-assisted proton transfer reaction in base pairs.
    Matsui T, Shigeta Y, Hirao K.
    Nucleic Acids Symp Ser (Oxf); 2007 Nov 03; (51):225-6. PubMed ID: 18029668
    [Abstract] [Full Text] [Related]

  • 7. Nanoswitches based on DNA base pairs: why adenine-thymine is less suitable than guanine-cytosine.
    Fonseca Guerra C, van der Wijst T, Bickelhaupt FM.
    Chemphyschem; 2006 Sep 11; 7(9):1971-9. PubMed ID: 16888742
    [Abstract] [Full Text] [Related]

  • 8. Conductivity of natural and modified DNA measured by scanning tunneling microscopy. The effect of sequence, charge and stacking.
    Kratochvílová I, Král K, Buncek M, Vísková A, Nespůrek S, Kochalska A, Todorciuc T, Weiter M, Schneider B.
    Biophys Chem; 2008 Nov 11; 138(1-2):3-10. PubMed ID: 18801607
    [Abstract] [Full Text] [Related]

  • 9. Sequence, structure and energy transfer in DNA.
    Nordlund TM.
    Photochem Photobiol; 2007 Nov 11; 83(3):625-36. PubMed ID: 17576373
    [Abstract] [Full Text] [Related]

  • 10. Open bridge-structured gold nanoparticle array for label-free DNA detection.
    Tokonami S, Shiigi H, Nagaoka T.
    Anal Chem; 2008 Nov 01; 80(21):8071-5. PubMed ID: 18837561
    [Abstract] [Full Text] [Related]

  • 11. Consecutive GC base pairs determine the energy barrier of DNA duplex formation under molecularly crowded conditions.
    Gu XB, Nakano S, Sugimoto N.
    Chem Commun (Camb); 2007 Jul 14; (26):2750-2. PubMed ID: 17594042
    [Abstract] [Full Text] [Related]

  • 12. Numerical simulations of Raman spectra of guanine-cytosine Watson-Crick and protonated Hoogsteen base pairs.
    Morari CI, Muntean CM.
    Biopolymers; 2003 Jul 14; 72(5):339-44. PubMed ID: 12949824
    [Abstract] [Full Text] [Related]

  • 13. Double proton transfer in the isolated and DNA-embedded guanine-cytosine base pair.
    Zoete V, Meuwly M.
    J Chem Phys; 2004 Sep 01; 121(9):4377-88. PubMed ID: 15332989
    [Abstract] [Full Text] [Related]

  • 14. Electronic properties of metal-modified DNA base pairs.
    Brancolini G, Di Felice R.
    J Phys Chem B; 2008 Nov 13; 112(45):14281-90. PubMed ID: 18950088
    [Abstract] [Full Text] [Related]

  • 15. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD, Lipert RJ, Porter MD.
    J Phys Chem B; 2006 Sep 07; 110(35):17444-51. PubMed ID: 16942083
    [Abstract] [Full Text] [Related]

  • 16. Direct measurement of electrical transport through DNA molecules.
    Porath D, Bezryadin A, de Vries S, Dekker C.
    Nature; 2000 Feb 10; 403(6770):635-8. PubMed ID: 10688194
    [Abstract] [Full Text] [Related]

  • 17. Detection of non-cross-linking interaction between DNA-modified gold nanoparticles and a DNA-modified flat gold surface using surface plasmon resonance imaging on a microchip.
    Sato Y, Hosokawa K, Maeda M.
    Colloids Surf B Biointerfaces; 2008 Mar 15; 62(1):71-6. PubMed ID: 17976962
    [Abstract] [Full Text] [Related]

  • 18. Detection of mercury(II) based on Hg2+ -DNA complexes inducing the aggregation of gold nanoparticles.
    Liu CW, Hsieh YT, Huang CC, Lin ZH, Chang HT.
    Chem Commun (Camb); 2008 May 21; (19):2242-4. PubMed ID: 18463753
    [Abstract] [Full Text] [Related]

  • 19. Sequence-dependent mechanics of single DNA molecules.
    Rief M, Clausen-Schaumann H, Gaub HE.
    Nat Struct Biol; 1999 Apr 21; 6(4):346-9. PubMed ID: 10201403
    [Abstract] [Full Text] [Related]

  • 20. Molecular voids formed from effective attraction in submonolayer DNA deposited on Au(111).
    Luo P, Bemelmans NL, Woody MS, Pearl TP.
    Langmuir; 2009 Jul 21; 25(14):7995-8000. PubMed ID: 19400576
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.