These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
12. MCAK, a Kin I kinesin, increases the catastrophe frequency of steady-state HeLa cell microtubules in an ATP-dependent manner in vitro. Newton CN, Wagenbach M, Ovechkina Y, Wordeman L, Wilson L. FEBS Lett; 2004 Aug 13; 572(1-3):80-4. PubMed ID: 15304328 [Abstract] [Full Text] [Related]
13. Modeling study of kinesin-13 MCAK microtubule depolymerase. Xie P. Eur Biophys J; 2024 Aug 13; 53(5-6):339-354. PubMed ID: 39093405 [Abstract] [Full Text] [Related]
14. Multi-talented MCAK: Microtubule depolymerizer with a strong grip. Diez S. Nat Cell Biol; 2011 Jul 01; 13(7):738-40. PubMed ID: 21725286 [Abstract] [Full Text] [Related]
17. In vitro reconstitution of the functional interplay between MCAK and EB3 at microtubule plus ends. Montenegro Gouveia S, Leslie K, Kapitein LC, Buey RM, Grigoriev I, Wagenbach M, Smal I, Meijering E, Hoogenraad CC, Wordeman L, Steinmetz MO, Akhmanova A. Curr Biol; 2010 Oct 12; 20(19):1717-22. PubMed ID: 20850319 [Abstract] [Full Text] [Related]
18. Nucleotide exchange in dimeric MCAK induces longitudinal and lateral stress at microtubule ends to support depolymerization. Burns KM, Wagenbach M, Wordeman L, Schriemer DC. Structure; 2014 Aug 05; 22(8):1173-1183. PubMed ID: 25066134 [Abstract] [Full Text] [Related]
19. New Insights into the Coupling between Microtubule Depolymerization and ATP Hydrolysis by Kinesin-13 Protein Kif2C. Wang W, Shen T, Guerois R, Zhang F, Kuerban H, Lv Y, Gigant B, Knossow M, Wang C. J Biol Chem; 2015 Jul 24; 290(30):18721-31. PubMed ID: 26055718 [Abstract] [Full Text] [Related]
20. Regulation of KinI kinesin ATPase activity by binding to the microtubule lattice. Moores CA, Hekmat-Nejad M, Sakowicz R, Milligan RA. J Cell Biol; 2003 Dec 08; 163(5):963-71. PubMed ID: 14662742 [Abstract] [Full Text] [Related] Page: [Next] [New Search]