These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
234 related items for PubMed ID: 16674252
1. Finite-size effects in the microscopic structure of a hard-sphere fluid in a narrow cylindrical pore. Román FL, White JA, González A, Velasco S. J Chem Phys; 2006 Apr 21; 124(15):154708. PubMed ID: 16674252 [Abstract] [Full Text] [Related]
2. Thermodynamic characterization of fluids confined in heterogeneous pores by monte carlo simulations in the grand canonical and the isobaric-isothermal ensembles. Puibasset J. J Phys Chem B; 2005 Apr 28; 109(16):8185-94. PubMed ID: 16851957 [Abstract] [Full Text] [Related]
3. Reactive Monte Carlo and grand-canonical Monte Carlo simulations of the propene metathesis reaction system. Hansen N, Jakobtorweihen S, Keil FJ. J Chem Phys; 2005 Apr 22; 122(16):164705. PubMed ID: 15945697 [Abstract] [Full Text] [Related]
4. A simulation method for the calculation of chemical potentials in small, inhomogeneous, and dense systems. Neimark AV, Vishnyakov A. J Chem Phys; 2005 Jun 15; 122(23):234108. PubMed ID: 16008431 [Abstract] [Full Text] [Related]
5. Determination of the melting point of hard spheres from direct coexistence simulation methods. Noya EG, Vega C, de Miguel E. J Chem Phys; 2008 Apr 21; 128(15):154507. PubMed ID: 18433235 [Abstract] [Full Text] [Related]
6. Density functional theory of fluids in the isothermal-isobaric ensemble. González A, White JA, Román FL, Velasco S. J Chem Phys; 2004 Jun 08; 120(22):10634-9. PubMed ID: 15268089 [Abstract] [Full Text] [Related]
7. Molecular solvent model of cylindrical electric double layers: a systematic study by Monte Carlo simulations and density functional theory. Goel T, Patra CN, Ghosh SK, Mukherjee T. J Chem Phys; 2008 Oct 21; 129(15):154707. PubMed ID: 19045218 [Abstract] [Full Text] [Related]
8. Freezing of hard spheres confined in narrow cylindrical pores. Gordillo MC, Martínez-Haya B, Romero-Enrique JM. J Chem Phys; 2006 Oct 14; 125(14):144702. PubMed ID: 17042626 [Abstract] [Full Text] [Related]
9. Molecular simulations of confined liquids: an alternative to the grand canonical Monte Carlo simulations. Ghoufi A, Morineau D, Lefort R, Hureau I, Hennous L, Zhu H, Szymczyk A, Malfreyt P, Maurin G. J Chem Phys; 2011 Feb 21; 134(7):074104. PubMed ID: 21341825 [Abstract] [Full Text] [Related]
10. Structure and adsorption of a hard-core multi-Yukawa fluid confined in a slitlike pore: grand canonical Monte Carlo simulation and density functional study. Yu YX, You FQ, Tang Y, Gao GH, Li YG. J Phys Chem B; 2006 Jan 12; 110(1):334-41. PubMed ID: 16471540 [Abstract] [Full Text] [Related]
11. A study of the pair and triplet structures of the quantum hard-sphere Yukawa fluid. Sesé LM. J Chem Phys; 2009 Feb 21; 130(7):074504. PubMed ID: 19239299 [Abstract] [Full Text] [Related]
12. Grand canonical Monte Carlo simulation of argon adsorption at the surface of silica nanopores: effect of pore size, pore morphology, and surface roughness. Coasne B, Pellenq RJ. J Chem Phys; 2004 Feb 08; 120(6):2913-22. PubMed ID: 15268439 [Abstract] [Full Text] [Related]
13. Spatial updating in the great grand canonical ensemble. Orkoulas G, Noon DP. J Chem Phys; 2009 Oct 28; 131(16):161106. PubMed ID: 19894918 [Abstract] [Full Text] [Related]
14. Thermodynamic pressure of simple fluids confined in cylindrical nanopores by isothermal-isobaric Monte Carlo: influence of fluid/substrate interactions. Puibasset J. J Chem Phys; 2007 Aug 21; 127(7):074702. PubMed ID: 17718622 [Abstract] [Full Text] [Related]
15. Density functional theory of fluids in nanopores: analysis of the fundamental measures theory in extreme dimensional-crossover situations. González A, White JA, Román FL, Velasco S. J Chem Phys; 2006 Aug 14; 125(6):64703. PubMed ID: 16942301 [Abstract] [Full Text] [Related]
16. Isobaric-isothermal monte carlo simulations from first principles: application to liquid water at ambient conditions. McGrath MJ, Siepmann JI, Kuo IF, Mundy CJ, VandeVondele J, Hutter J, Mohamed F, Krack M. Chemphyschem; 2005 Sep 05; 6(9):1894-901. PubMed ID: 16080220 [Abstract] [Full Text] [Related]
17. A cluster algorithm for Monte Carlo simulation at constant pressure. Almarza NG. J Chem Phys; 2009 May 14; 130(18):184106. PubMed ID: 19449907 [Abstract] [Full Text] [Related]
18. Adsorption of a Hard Sphere Fluid in Disordered Microporous Quenched Matrix of Short Chain Molecules: Integral Equations and Grand Canonical Monte Carlo Simulations. Malo BM, Pizio O, Trokhymchuk A, Duda Y. J Colloid Interface Sci; 1999 Mar 15; 211(2):387-394. PubMed ID: 10049555 [Abstract] [Full Text] [Related]
19. Thermodynamics and partitioning of homopolymers into a slit-A grand canonical Monte Carlo simulation study. Jiang W, Wang Y. J Chem Phys; 2004 Aug 22; 121(8):3905-13. PubMed ID: 15303959 [Abstract] [Full Text] [Related]
20. Structure of inhomogeneous attractive and repulsive hard-core yukawa fluid: grand canonical Monte Carlo simulation and density functional theory study. You FQ, Yu YX, Gao GH. J Phys Chem B; 2005 Mar 03; 109(8):3512-8. PubMed ID: 16851387 [Abstract] [Full Text] [Related] Page: [Next] [New Search]