These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
768 related items for PubMed ID: 16677865
1. A genetic approach for investigating vagal sensory roles in regulation of gastrointestinal function and food intake. Fox EA. Auton Neurosci; 2006 Jun 30; 126-127():9-29. PubMed ID: 16677865 [Abstract] [Full Text] [Related]
2. Lingual deficits in neurotrophin double knockout mice. Nosrat IV, Agerman K, Marinescu A, Ernfors P, Nosrat CA. J Neurocytol; 2004 Dec 30; 33(6):607-15. PubMed ID: 16217617 [Abstract] [Full Text] [Related]
4. Musings on the wanderer: what's new in our understanding of vago-vagal reflexes? I. Morphology and topography of vagal afferents innervating the GI tract. Powley TL, Phillips RJ. Am J Physiol Gastrointest Liver Physiol; 2002 Dec 06; 283(6):G1217-25. PubMed ID: 12388183 [Abstract] [Full Text] [Related]
5. Reduced intestinal brain-derived neurotrophic factor increases vagal sensory innervation of the intestine and enhances satiation. Biddinger JE, Fox EA. J Neurosci; 2014 Jul 30; 34(31):10379-93. PubMed ID: 25080597 [Abstract] [Full Text] [Related]
6. Cranial sensory neuron development in the absence of brain-derived neurotrophic factor in BDNF/Bax double null mice. Hellard D, Brosenitsch T, Fritzsch B, Katz DM. Dev Biol; 2004 Nov 01; 275(1):34-43. PubMed ID: 15464571 [Abstract] [Full Text] [Related]
7. Factors regulating vagal sensory development: potential role in obesities of developmental origin. Fox EA, Murphy MC. Physiol Behav; 2008 Apr 22; 94(1):90-104. PubMed ID: 18234244 [Abstract] [Full Text] [Related]
8. Modulation of vagal afferent excitation and reduction of food intake by leptin and cholecystokinin. Peters JH, Simasko SM, Ritter RC. Physiol Behav; 2006 Nov 30; 89(4):477-85. PubMed ID: 16872644 [Abstract] [Full Text] [Related]
9. Selective loss of vagal intramuscular mechanoreceptors in mice mutant for steel factor, the c-Kit receptor ligand. Fox EA, Phillips RJ, Byerly MS, Baronowsky EA, Chi MM, Powley TL. Anat Embryol (Berl); 2002 Jul 30; 205(4):325-42. PubMed ID: 12136263 [Abstract] [Full Text] [Related]
11. Loss of neurotrophin-3 from smooth muscle disrupts vagal gastrointestinal afferent signaling and satiation. Fox EA, Biddinger JE, Baquet ZC, Jones KR, McAdams J. Am J Physiol Regul Integr Comp Physiol; 2013 Dec 30; 305(11):R1307-22. PubMed ID: 24068045 [Abstract] [Full Text] [Related]
12. Effects of neurotrophin and neurotrophin receptor disruption on the afferent inner ear innervation. Fritzsch B, Silos-Santiago I, Bianchi LM, Farinas I. Semin Cell Dev Biol; 1997 Dec 30; 8():277-84. PubMed ID: 11542690 [Abstract] [Full Text] [Related]
13. Neurotrophins in the ear: their roles in sensory neuron survival and fiber guidance. Fritzsch B, Tessarollo L, Coppola E, Reichardt LF. Prog Brain Res; 2004 Dec 30; 146():265-78. PubMed ID: 14699969 [Abstract] [Full Text] [Related]
15. Distribution of the vanilloid receptor (VR1) in the gastrointestinal tract. Ward SM, Bayguinov J, Won KJ, Grundy D, Berthoud HR. J Comp Neurol; 2003 Oct 06; 465(1):121-35. PubMed ID: 12926020 [Abstract] [Full Text] [Related]
19. Lack of Bdnf and TrkB signalling in the postnatal cochlea leads to a spatial reshaping of innervation along the tonotopic axis and hearing loss. Schimmang T, Tan J, Müller M, Zimmermann U, Rohbock K, Kôpschall I, Limberger A, Minichiello L, Knipper M. Development; 2003 Oct 06; 130(19):4741-50. PubMed ID: 12925599 [Abstract] [Full Text] [Related]
20. Brain-gut axis and its role in the control of food intake. Konturek SJ, Konturek JW, Pawlik T, Brzozowski T. J Physiol Pharmacol; 2004 Mar 06; 55(1 Pt 2):137-54. PubMed ID: 15082874 [Abstract] [Full Text] [Related] Page: [Next] [New Search]