These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. OXBench: a benchmark for evaluation of protein multiple sequence alignment accuracy. Raghava GP, Searle SM, Audley PC, Barber JD, Barton GJ. BMC Bioinformatics; 2003 Oct 10; 4():47. PubMed ID: 14552658 [Abstract] [Full Text] [Related]
3. MSAProbs: multiple sequence alignment based on pair hidden Markov models and partition function posterior probabilities. Liu Y, Schmidt B, Maskell DL. Bioinformatics; 2010 Aug 15; 26(16):1958-64. PubMed ID: 20576627 [Abstract] [Full Text] [Related]
4. A generalized affine gap model significantly improves protein sequence alignment accuracy. Zachariah MA, Crooks GE, Holbrook SR, Brenner SE. Proteins; 2005 Feb 01; 58(2):329-38. PubMed ID: 15562515 [Abstract] [Full Text] [Related]
5. Improvement in the accuracy of multiple sequence alignment program MAFFT. Katoh K, Kuma K, Miyata T, Toh H. Genome Inform; 2005 Feb 01; 16(1):22-33. PubMed ID: 16362903 [Abstract] [Full Text] [Related]
6. Incremental window-based protein sequence alignment algorithms. Rangwala H, Karypis G. Bioinformatics; 2007 Jan 15; 23(2):e17-23. PubMed ID: 17237087 [Abstract] [Full Text] [Related]
7. SPEM: improving multiple sequence alignment with sequence profiles and predicted secondary structures. Zhou H, Zhou Y. Bioinformatics; 2005 Sep 15; 21(18):3615-21. PubMed ID: 16020471 [Abstract] [Full Text] [Related]
9. T-Coffee: A novel method for fast and accurate multiple sequence alignment. Notredame C, Higgins DG, Heringa J. J Mol Biol; 2000 Sep 08; 302(1):205-17. PubMed ID: 10964570 [Abstract] [Full Text] [Related]
10. Fast model-based protein homology detection without alignment. Hochreiter S, Heusel M, Obermayer K. Bioinformatics; 2007 Jul 15; 23(14):1728-36. PubMed ID: 17488755 [Abstract] [Full Text] [Related]
11. An adaptive and iterative algorithm for refining multiple sequence alignment. Wang Y, Li KB. Comput Biol Chem; 2004 Apr 15; 28(2):141-8. PubMed ID: 15130542 [Abstract] [Full Text] [Related]
12. The influence of gapped positions in multiple sequence alignments on secondary structure prediction methods. Simossis VA, Heringa J. Comput Biol Chem; 2004 Dec 15; 28(5-6):351-66. PubMed ID: 15556476 [Abstract] [Full Text] [Related]
13. PRALINETM: a strategy for improved multiple alignment of transmembrane proteins. Pirovano W, Feenstra KA, Heringa J. Bioinformatics; 2008 Feb 15; 24(4):492-7. PubMed ID: 18174178 [Abstract] [Full Text] [Related]
14. Model-based prediction of sequence alignment quality. Ahola V, Aittokallio T, Vihinen M, Uusipaikka E. Bioinformatics; 2008 Oct 01; 24(19):2165-71. PubMed ID: 18678587 [Abstract] [Full Text] [Related]
15. PROMALS: towards accurate multiple sequence alignments of distantly related proteins. Pei J, Grishin NV. Bioinformatics; 2007 Apr 01; 23(7):802-8. PubMed ID: 17267437 [Abstract] [Full Text] [Related]
16. Probalign: multiple sequence alignment using partition function posterior probabilities. Roshan U, Livesay DR. Bioinformatics; 2006 Nov 15; 22(22):2715-21. PubMed ID: 16954142 [Abstract] [Full Text] [Related]
17. QOMA: quasi-optimal multiple alignment of protein sequences. Zhang X, Kahveci T. Bioinformatics; 2007 Jan 15; 23(2):162-8. PubMed ID: 17121778 [Abstract] [Full Text] [Related]
18. FRalanyzer: a tool for functional analysis of fold-recognition sequence-structure alignments. Saini HK, Fischer D. Nucleic Acids Res; 2007 Jul 15; 35(Web Server issue):W499-502. PubMed ID: 17537819 [Abstract] [Full Text] [Related]
19. Homology-based modeling of 3D structures of protein-protein complexes using alignments of modified sequence profiles. Kundrotas PJ, Lensink MF, Alexov E. Int J Biol Macromol; 2008 Aug 15; 43(2):198-208. PubMed ID: 18572239 [Abstract] [Full Text] [Related]
20. An introduction to protein contact prediction. Hamilton N, Huber T. Methods Mol Biol; 2008 Aug 15; 453():87-104. PubMed ID: 18712298 [Abstract] [Full Text] [Related] Page: [Next] [New Search]