These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
983 related items for PubMed ID: 16683262
1. Computational design of proteins stereochemically optimized in size, stability, and folding speed. Joshi S, Rana S, Wangikar P, Durani S. Biopolymers; 2006 Oct 05; 83(2):122-34. PubMed ID: 16683262 [Abstract] [Full Text] [Related]
2. Protein design with L- and D-alpha-amino acid structures as the alphabet. Durani S. Acc Chem Res; 2008 Oct 05; 41(10):1301-8. PubMed ID: 18642934 [Abstract] [Full Text] [Related]
3. Simulated folding in polypeptides of diversified molecular tacticity: implications for protein folding and de novo design. Ramakrishnan V, Ranbhor R, Durani S. Biopolymers; 2005 Jun 05; 78(2):96-105. PubMed ID: 15690413 [Abstract] [Full Text] [Related]
4. Understanding the role of the topology in protein folding by computational inverse folding experiments. Mucherino A, Costantini S, di Serafino D, D'Apuzzo M, Facchiano A, Colonna G. Comput Biol Chem; 2008 Aug 05; 32(4):233-9. PubMed ID: 18479970 [Abstract] [Full Text] [Related]
5. Folding the main chain of small proteins with the genetic algorithm. Dandekar T, Argos P. J Mol Biol; 1994 Feb 25; 236(3):844-61. PubMed ID: 8114098 [Abstract] [Full Text] [Related]
6. Mechanism-based protein design: attempted "nucleation-condensation" approach to a possible minimal helix-bundle protein. Mohanraja K, Dhanasekaran M, Kundu B, Durani S. Biopolymers; 2003 Oct 25; 70(3):355-63. PubMed ID: 14579308 [Abstract] [Full Text] [Related]
7. Folding mechanisms of proteins with high sequence identity but different folds. Scott KA, Daggett V. Biochemistry; 2007 Feb 13; 46(6):1545-56. PubMed ID: 17279619 [Abstract] [Full Text] [Related]
8. A tale of two secondary structure elements: when a beta-hairpin becomes an alpha-helix. Cregut D, Civera C, Macias MJ, Wallon G, Serrano L. J Mol Biol; 1999 Sep 17; 292(2):389-401. PubMed ID: 10493883 [Abstract] [Full Text] [Related]
11. Kinetics and thermodynamics of folding of a de novo designed four-helix bundle protein. Guo Z, Thirumalai D. J Mol Biol; 1996 Oct 25; 263(2):323-43. PubMed ID: 8913310 [Abstract] [Full Text] [Related]
13. Computer simulations of the properties of the alpha2, alpha2C, and alpha2D de novo designed helical proteins. Sikorski A, Kolinski A, Skolnick J. Proteins; 2000 Jan 01; 38(1):17-28. PubMed ID: 10651035 [Abstract] [Full Text] [Related]
14. Computational simulations of protein folding to engineer amino acid sequences to encourage desired supersecondary structure formation. Gerstman BS, Chapagain PP. Methods Mol Biol; 2013 Jan 01; 932():191-204. PubMed ID: 22987354 [Abstract] [Full Text] [Related]
15. Probing possible downhill folding: native contact topology likely places a significant constraint on the folding cooperativity of proteins with approximately 40 residues. Badasyan A, Liu Z, Chan HS. J Mol Biol; 2008 Dec 12; 384(2):512-30. PubMed ID: 18823994 [Abstract] [Full Text] [Related]
16. A designed branched three-helix bundle protein dimer. Dolphin GT. J Am Chem Soc; 2006 Jun 07; 128(22):7287-90. PubMed ID: 16734482 [Abstract] [Full Text] [Related]
17. Characterization and further stabilization of designed ankyrin repeat proteins by combining molecular dynamics simulations and experiments. Interlandi G, Wetzel SK, Settanni G, Plückthun A, Caflisch A. J Mol Biol; 2008 Jan 18; 375(3):837-54. PubMed ID: 18048057 [Abstract] [Full Text] [Related]
18. Folding a de novo designed peptide into an alpha-helix through hydrophobic binding by a bowl-shaped host. Tashiro S, Tominaga M, Yamaguchi Y, Kato K, Fujita M. Angew Chem Int Ed Engl; 2005 Dec 23; 45(2):241-4. PubMed ID: 16312001 [No Abstract] [Full Text] [Related]