These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


205 related items for PubMed ID: 1668347

  • 41. Endothelin-induced changes in intracellular pH and Ca2+ in coronary smooth muscle: role of Na(+)-H+ exchange.
    Hubel CA, Highsmith RF.
    Biochem J; 1995 Sep 15; 310 ( Pt 3)(Pt 3):1013-20. PubMed ID: 7575397
    [Abstract] [Full Text] [Related]

  • 42. Consequences of CO2 acidosis for transmembrane Na+ transport and membrane current in rabbit cardiac Purkinje fibres.
    Bielen FV, Bosteels S, Verdonck F.
    J Physiol; 1990 Aug 15; 427():325-45. PubMed ID: 2120426
    [Abstract] [Full Text] [Related]

  • 43. Apical membrane Na+/H+ exchange in Necturus gallbladder epithelium. Its dependence on extracellular and intracellular pH and on external Na+ concentration.
    Altenberg GA, Reuss L.
    J Gen Physiol; 1990 Feb 15; 95(2):369-92. PubMed ID: 2307961
    [Abstract] [Full Text] [Related]

  • 44. Activation of the Na+/H+ exchanger by cellular pH and extracellular Na+ in rat adipocytes; inhibition by isoproterenol.
    Arsenis G.
    Endocrinology; 1995 Jul 15; 136(7):3128-36. PubMed ID: 7789340
    [Abstract] [Full Text] [Related]

  • 45. Na/H exchange in cultured chick heart cells. pHi regulation.
    Piwnica-Worms D, Jacob R, Horres CR, Lieberman M.
    J Gen Physiol; 1985 Jan 15; 85(1):43-64. PubMed ID: 3968533
    [Abstract] [Full Text] [Related]

  • 46. Na+-H+ exchange and Na+ entry across the apical membrane of Necturus gallbladder.
    Weinman SA, Reuss L.
    J Gen Physiol; 1984 Jan 15; 83(1):57-74. PubMed ID: 6319545
    [Abstract] [Full Text] [Related]

  • 47. Decreased sensitivity of contraction to changes of intracellular pH in papillary muscle from diabetic rat hearts.
    Lagadic-Gossmann D, Feuvray D.
    J Physiol; 1990 Mar 15; 422():481-97. PubMed ID: 2352189
    [Abstract] [Full Text] [Related]

  • 48. Two functionally different Na/K pumps in cardiac ventricular myocytes.
    Gao J, Mathias RT, Cohen IS, Baldo GJ.
    J Gen Physiol; 1995 Nov 15; 106(5):995-1030. PubMed ID: 8648301
    [Abstract] [Full Text] [Related]

  • 49. Na+-H+ exchange activity in rat hepatocytes: role in regulation of intracellular pH.
    Renner EL, Lake JR, Persico M, Scharschmidt BF.
    Am J Physiol; 1989 Jan 15; 256(1 Pt 1):G44-52. PubMed ID: 2536240
    [Abstract] [Full Text] [Related]

  • 50. Intracellular pH in vascular smooth muscle: regulation by sodium-hydrogen exchange and multiple sodium dependent HCO3- mechanisms.
    Little PJ, Neylon CB, Farrelly CA, Weissberg PL, Cragoe EJ, Bobik A.
    Cardiovasc Res; 1995 Feb 15; 29(2):239-46. PubMed ID: 7736501
    [Abstract] [Full Text] [Related]

  • 51. The mechanism by which cytoplasmic protons inhibit the sodium-calcium exchanger in guinea-pig heart cells.
    Doering AE, Lederer WJ.
    J Physiol; 1993 Jul 15; 466():481-99. PubMed ID: 8410703
    [Abstract] [Full Text] [Related]

  • 52. Intracellular pH recovery and lactate efflux in mouse soleus muscles stimulated in vitro: the involvement of sodium/proton exchange and a lactate carrier.
    Juel C.
    Acta Physiol Scand; 1988 Mar 15; 132(3):363-71. PubMed ID: 2852437
    [Abstract] [Full Text] [Related]

  • 53. Cytoplasmic pH regulation in thymic lymphocytes by an amiloride-sensitive Na+/H+ antiport.
    Grinstein S, Cohen S, Rothstein A.
    J Gen Physiol; 1984 Mar 15; 83(3):341-69. PubMed ID: 6325586
    [Abstract] [Full Text] [Related]

  • 54. The action of Na+ as a cofactor in the inhibition by cytoplasmic protons of the cardiac Na(+)-Ca2+ exchanger in the guinea-pig.
    Doering AE, Lederer WJ.
    J Physiol; 1994 Oct 01; 480 ( Pt 1)(Pt 1):9-20. PubMed ID: 7853229
    [Abstract] [Full Text] [Related]

  • 55. Extracellular osmotic pressure modulates sodium-calcium exchange in isolated guinea-pig ventricular myocytes.
    Wright AR, Rees SA, Vandenberg JI, Twist VW, Powell T.
    J Physiol; 1995 Oct 15; 488 ( Pt 2)(Pt 2):293-301. PubMed ID: 8568671
    [Abstract] [Full Text] [Related]

  • 56. Shrinkage-induced activation of Na+/H+ exchange in rat renal mesangial cells.
    Bevensee MO, Bashi E, Schlue WR, Boyarsky G, Boron WF.
    Am J Physiol; 1999 Mar 15; 276(3):C674-83. PubMed ID: 10069995
    [Abstract] [Full Text] [Related]

  • 57. Contribution of Na+/H+ exchange to pH regulation in pulmonary artery smooth muscle cells.
    Quinn DA, Honeyman TW, Joseph PM, Thompson BT, Hales CA, Scheid CR.
    Am J Respir Cell Mol Biol; 1991 Dec 15; 5(6):586-91. PubMed ID: 1659836
    [Abstract] [Full Text] [Related]

  • 58. Comparison of intracellular pH transients in single ventricular myocytes and isolated ventricular muscle of guinea-pig.
    Bountra C, Powell T, Vaughan-Jones RD.
    J Physiol; 1990 May 15; 424():343-65. PubMed ID: 2167972
    [Abstract] [Full Text] [Related]

  • 59. Cell volume regulation during hyperosmotic shrinkage is mediated by Na+/K+-ATPase and Na+-K+-2Cl- cotransporter in Necturus gastrics surface epithelial cells.
    Nylander-Koski O, Mustonen H, Kiviluoto T, Kivilaakso E.
    Dig Dis Sci; 2005 Nov 15; 50(11):2043-9. PubMed ID: 16240213
    [Abstract] [Full Text] [Related]

  • 60. Role of the cardiac Na(+)/H(+)exchanger in [Ca(2+)](i)and [Na(+)](i)handling during intracellular acidosis. Effect of cariporide (Hoe 642).
    Salameh A, Dhein S, Beuckelmann DJ.
    Pharmacol Res; 2002 Jan 15; 45(1):35-41. PubMed ID: 11820859
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 11.