These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


615 related items for PubMed ID: 16688169

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. What CO2 well gases tell us about the origin of noble gases in the mantle and their relationship to the atmosphere.
    Ballentine CJ, Holland G.
    Philos Trans A Math Phys Eng Sci; 2008 Nov 28; 366(1883):4183-203. PubMed ID: 18826923
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Identification of chondritic krypton and xenon in Yellowstone gases and the timing of terrestrial volatile accretion.
    Broadley MW, Barry PH, Bekaert DV, Byrne DJ, Caracausi A, Ballentine CJ, Marty B.
    Proc Natl Acad Sci U S A; 2020 Jun 23; 117(25):13997-14004. PubMed ID: 32513744
    [Abstract] [Full Text] [Related]

  • 5. Possible cometary origin of heavy noble gases in the atmospheres of Venus, Earth and Mars.
    Owen T, Bar-Nun A, Kleinfeld I.
    Nature; 1992 Jul 02; 358(6381):43-6. PubMed ID: 11536499
    [Abstract] [Full Text] [Related]

  • 6. Chondritic xenon in the Earth's mantle.
    Caracausi A, Avice G, Burnard PG, Füri E, Marty B.
    Nature; 2016 May 05; 533(7601):82-5. PubMed ID: 27111512
    [Abstract] [Full Text] [Related]

  • 7. On the origin of noble gases in mantle plumes.
    Coltice N, Ricard Y.
    Philos Trans A Math Phys Eng Sci; 2002 Nov 15; 360(1800):2633-48. PubMed ID: 12460484
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Non-equilibrium degassing and a primordial source for helium in ocean-island volcanism.
    Gonnermann HM, Mukhopadhyay S.
    Nature; 2007 Oct 25; 449(7165):1037-40. PubMed ID: 17960241
    [Abstract] [Full Text] [Related]

  • 11. Early differentiation and volatile accretion recorded in deep-mantle neon and xenon.
    Mukhopadhyay S.
    Nature; 2012 Jun 06; 486(7401):101-4. PubMed ID: 22678288
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Capture of nebular gases during Earth's accretion is preserved in deep-mantle neon.
    Williams CD, Mukhopadhyay S.
    Nature; 2019 Jan 06; 565(7737):78-81. PubMed ID: 30518858
    [Abstract] [Full Text] [Related]

  • 14. Xenon isotopic constraints on the history of volatile recycling into the mantle.
    Parai R, Mukhopadhyay S.
    Nature; 2018 Aug 06; 560(7717):223-227. PubMed ID: 30089920
    [Abstract] [Full Text] [Related]

  • 15. Helium isotopic evidence for episodic mantle melting and crustal growth.
    Parman SW.
    Nature; 2007 Apr 19; 446(7138):900-3. PubMed ID: 17443184
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Atmospheric Ar and Ne returned from mantle depths to the Earth's surface by forearc recycling.
    Baldwin SL, Das JP.
    Proc Natl Acad Sci U S A; 2015 Nov 17; 112(46):14174-9. PubMed ID: 26542683
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 31.