These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


322 related items for PubMed ID: 16691103

  • 1. Indications of the neutron effect contribution in the solid cancer data of the A-bomb survivors.
    Kellerer AM, Rühm W, Walsh L.
    Health Phys; 2006 Jun; 90(6):554-64. PubMed ID: 16691103
    [Abstract] [Full Text] [Related]

  • 2. Current risk estimates based on the A-bomb survivors data - a discussion in terms of the ICRP recommendations on the neutron weighting factor.
    Rühm W, Walsh L.
    Radiat Prot Dosimetry; 2007 Jun; 126(1-4):423-31. PubMed ID: 17533156
    [Abstract] [Full Text] [Related]

  • 3. The effect of changes in dosimetry on cancer mortality risk estimates in the atomic bomb survivors.
    Preston DL, Pierce DA.
    Radiat Res; 1988 Jun; 114(3):437-66. PubMed ID: 3375435
    [Abstract] [Full Text] [Related]

  • 4. Accounting for neutron exposure in the Japanese atomic bomb survivors.
    Cullings HM, Pierce DA, Kellerer AM.
    Radiat Res; 2014 Dec; 182(6):587-98. PubMed ID: 25409123
    [Abstract] [Full Text] [Related]

  • 5. Cancer risk estimates for gamma-rays with regard to organ-specific doses Part II: site-specific solid cancers.
    Walsh L, Rühm W, Kellerer AM.
    Radiat Environ Biophys; 2004 Dec; 43(4):225-31. PubMed ID: 15645312
    [Abstract] [Full Text] [Related]

  • 6. Studies of the mortality of A-bomb survivors. 9. Mortality, 1950-1985: Part 1. Comparison of risk coefficients for site-specific cancer mortality based on the DS86 and T65DR shielded kerma and organ doses.
    Shimizu Y, Kato H, Schull WJ, Preston DL, Fujita S, Pierce DA.
    Radiat Res; 1989 Jun; 118(3):502-24. PubMed ID: 2727272
    [Abstract] [Full Text] [Related]

  • 7. Lung cancer risk in mice: analysis of fractionation effects and neutron RBE with a biologically motivated model.
    Heidenreich WF, Carnes BA, Paretzke HG.
    Radiat Res; 2006 Nov; 166(5):794-801. PubMed ID: 17067205
    [Abstract] [Full Text] [Related]

  • 8. Cancer risk estimates for gamma-rays with regard to organ-specific doses. Part I: All solid cancers combined.
    Walsh L, Rühm W, Kellerer AM.
    Radiat Environ Biophys; 2004 Sep; 43(3):145-51. PubMed ID: 15309386
    [Abstract] [Full Text] [Related]

  • 9. Assessing the Relative Biological Effectiveness of Neutrons across Organs of Varying Depth among the Atomic Bomb Survivors.
    Cordova KA, Cullings HM.
    Radiat Res; 2019 Aug; 192(4):380-387. PubMed ID: 31390313
    [Abstract] [Full Text] [Related]

  • 10. Leukaemia following childhood radiation exposure in the Japanese atomic bomb survivors and in medically exposed groups.
    Little MP.
    Radiat Prot Dosimetry; 2008 Aug; 132(2):156-65. PubMed ID: 18936088
    [Abstract] [Full Text] [Related]

  • 11. Risk coefficient for gamma-rays with regard to solid cancer.
    Kellerer AM, Walsh L, Nekolla EA.
    Radiat Environ Biophys; 2002 Jun; 41(2):113-23. PubMed ID: 12201054
    [Abstract] [Full Text] [Related]

  • 12. Neutron relative biological effectiveness for solid cancer incidence in the Japanese A-bomb survivors: an analysis considering the degree of independent effects from γ-ray and neutron absorbed doses with hierarchical partitioning.
    Walsh L.
    Radiat Environ Biophys; 2013 Mar; 52(1):29-36. PubMed ID: 23161400
    [Abstract] [Full Text] [Related]

  • 13. Neutrons at Hiroshima: how their disappearance affected risk estimates.
    Ellett WH.
    Radiat Res; 1991 Oct; 128(1 Suppl):S147-52. PubMed ID: 1924742
    [Abstract] [Full Text] [Related]

  • 14. Assessing the impact of neutron relative biological effectiveness on all solid cancer mortality risks in the Japanese atomic bomb survivors.
    Hafner L, Walsh L, Rühm W.
    Int J Radiat Biol; 2024 Oct; 100(1):61-71. PubMed ID: 37772764
    [Abstract] [Full Text] [Related]

  • 15. Cancer risk estimates from the combined Japanese A-bomb and Hodgkin cohorts for doses relevant to radiotherapy.
    Schneider U, Walsh L.
    Radiat Environ Biophys; 2008 Apr; 47(2):253-63. PubMed ID: 18157543
    [Abstract] [Full Text] [Related]

  • 16. Cancer mortality among atomic bomb survivors exposed in utero or as young children, October 1950-May 1992.
    Delongchamp RR, Mabuchi K, Yoshimoto Y, Preston DL.
    Radiat Res; 1997 Mar; 147(3):385-95. PubMed ID: 9052687
    [Abstract] [Full Text] [Related]

  • 17. Stable chromosome aberrations among A-bomb survivors: an update.
    Stram DO, Sposto R, Preston D, Abrahamson S, Honda T, Awa AA.
    Radiat Res; 1993 Oct; 136(1):29-36. PubMed ID: 8210335
    [Abstract] [Full Text] [Related]

  • 18. Experimental derivation of relative biological effectiveness of A-bomb neutrons in Hiroshima and Nagasaki and implications for risk assessment.
    Sasaki MS, Nomura T, Ejima Y, Utsumi H, Endo S, Saito I, Itoh T, Hoshi M.
    Radiat Res; 2008 Jul; 170(1):101-17. PubMed ID: 18582156
    [Abstract] [Full Text] [Related]

  • 19. Neutron versus gamma-ray risk estimates. Inferences from the cancer incidence and mortality data in Hiroshima.
    Kellerer AM, Nekolla E.
    Radiat Environ Biophys; 1997 Jun; 36(2):73-83. PubMed ID: 9271794
    [Abstract] [Full Text] [Related]

  • 20. The impact of possible modifications to the DS86 dosimetry on neutron risk and relative biological effectiveness.
    Hunter N, Charles MW.
    J Radiol Prot; 2002 Dec; 22(4):357-70. PubMed ID: 12546224
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 17.