These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


450 related items for PubMed ID: 16704417

  • 1. Comparative biochemical characterization of nitrile-forming proteins from plants and insects that alter myrosinase-catalysed hydrolysis of glucosinolates.
    Burow M, Markert J, Gershenzon J, Wittstock U.
    FEBS J; 2006 Jun; 273(11):2432-46. PubMed ID: 16704417
    [Abstract] [Full Text] [Related]

  • 2. Characterization of recombinant nitrile-specifier proteins (NSPs) of Arabidopsis thaliana: dependency on Fe(II) ions and the effect of glucosinolate substrate and reaction conditions.
    Kong XY, Kissen R, Bones AM.
    Phytochemistry; 2012 Dec; 84():7-17. PubMed ID: 22954730
    [Abstract] [Full Text] [Related]

  • 3. Epithiospecifier protein activity in broccoli: the link between terminal alkenyl glucosinolates and sulphoraphane nitrile.
    Williams DJ, Critchley C, Pun S, Nottingham S, O'Hare TJ.
    Phytochemistry; 2008 Nov; 69(16):2765-73. PubMed ID: 18977005
    [Abstract] [Full Text] [Related]

  • 4. The genetic basis of constitutive and herbivore-induced ESP-independent nitrile formation in Arabidopsis.
    Burow M, Losansky A, Müller R, Plock A, Kliebenstein DJ, Wittstock U.
    Plant Physiol; 2009 Jan; 149(1):561-74. PubMed ID: 18987211
    [Abstract] [Full Text] [Related]

  • 5. Characterisation of recombinant epithiospecifier protein and its over-expression in Arabidopsis thaliana.
    Zabala Mde T, Grant M, Bones AM, Bennett R, Lim YS, Kissen R, Rossiter JT.
    Phytochemistry; 2005 Apr; 66(8):859-67. PubMed ID: 15845404
    [Abstract] [Full Text] [Related]

  • 6. A thiocyanate-forming protein generates multiple products upon allylglucosinolate breakdown in Thlaspi arvense.
    Kuchernig JC, Backenköhler A, Lübbecke M, Burow M, Wittstock U.
    Phytochemistry; 2011 Oct; 72(14-15):1699-709. PubMed ID: 21783213
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Insect herbivore counteradaptations to the plant glucosinolate-myrosinase system.
    Winde I, Wittstock U.
    Phytochemistry; 2011 Sep; 72(13):1566-75. PubMed ID: 21316065
    [Abstract] [Full Text] [Related]

  • 9. Tipping the scales--specifier proteins in glucosinolate hydrolysis.
    Wittstock U, Burow M.
    IUBMB Life; 2007 Dec; 59(12):744-51. PubMed ID: 18085474
    [Abstract] [Full Text] [Related]

  • 10. Differing mechanisms of simple nitrile formation on glucosinolate degradation in Lepidium sativum and Nasturtium officinale seeds.
    Williams DJ, Critchley C, Pun S, Chaliha M, O'Hare TJ.
    Phytochemistry; 2009 Dec; 70(11-12):1401-9. PubMed ID: 19747700
    [Abstract] [Full Text] [Related]

  • 11. Successful herbivore attack due to metabolic diversion of a plant chemical defense.
    Wittstock U, Agerbirk N, Stauber EJ, Olsen CE, Hippler M, Mitchell-Olds T, Gershenzon J, Vogel H.
    Proc Natl Acad Sci U S A; 2004 Apr 06; 101(14):4859-64. PubMed ID: 15051878
    [Abstract] [Full Text] [Related]

  • 12. The Arabidopsis epithiospecifier protein promotes the hydrolysis of glucosinolates to nitriles and influences Trichoplusia ni herbivory.
    Lambrix V, Reichelt M, Mitchell-Olds T, Kliebenstein DJ, Gershenzon J.
    Plant Cell; 2001 Dec 06; 13(12):2793-807. PubMed ID: 11752388
    [Abstract] [Full Text] [Related]

  • 13. Altered glucosinolate hydrolysis in genetically engineered Arabidopsis thaliana and its influence on the larval development of Spodoptera littoralis.
    Burow M, Müller R, Gershenzon J, Wittstock U.
    J Chem Ecol; 2006 Nov 06; 32(11):2333-49. PubMed ID: 17061170
    [Abstract] [Full Text] [Related]

  • 14. Glucosinolate hydrolysis in Lepidium sativum--identification of the thiocyanate-forming protein.
    Burow M, Bergner A, Gershenzon J, Wittstock U.
    Plant Mol Biol; 2007 Jan 06; 63(1):49-61. PubMed ID: 17139450
    [Abstract] [Full Text] [Related]

  • 15. Myrosinases from root and leaves of Arabidopsis thaliana have different catalytic properties.
    Andersson D, Chakrabarty R, Bejai S, Zhang J, Rask L, Meijer J.
    Phytochemistry; 2009 Jan 06; 70(11-12):1345-54. PubMed ID: 19703694
    [Abstract] [Full Text] [Related]

  • 16. Key role of Fe(2+) in epithiospecifier protein activity.
    Williams DJ, Critchley C, Pun S, Chaliha M, O'Hare TJ.
    J Agric Food Chem; 2010 Aug 11; 58(15):8512-21. PubMed ID: 20608730
    [Abstract] [Full Text] [Related]

  • 17. Formation of simple nitriles upon glucosinolate hydrolysis affects direct and indirect defense against the specialist herbivore, Pieris rapae.
    Mumm R, Burow M, Bukovinszkine'kiss G, Kazantzidou E, Wittstock U, Dicke M, Gershenzon J.
    J Chem Ecol; 2008 Oct 11; 34(10):1311-21. PubMed ID: 18787901
    [Abstract] [Full Text] [Related]

  • 18. Arabidopsis myrosinases TGG1 and TGG2 have redundant function in glucosinolate breakdown and insect defense.
    Barth C, Jander G.
    Plant J; 2006 May 11; 46(4):549-62. PubMed ID: 16640593
    [Abstract] [Full Text] [Related]

  • 19. Effect of cooking brassica vegetables on the subsequent hydrolysis and metabolic fate of glucosinolates.
    Rungapamestry V, Duncan AJ, Fuller Z, Ratcliffe B.
    Proc Nutr Soc; 2007 Feb 11; 66(1):69-81. PubMed ID: 17343774
    [Abstract] [Full Text] [Related]

  • 20. Identification of indole glucosinolate breakdown products with antifeedant effects on Myzus persicae (green peach aphid).
    Kim JH, Lee BW, Schroeder FC, Jander G.
    Plant J; 2008 Jun 11; 54(6):1015-26. PubMed ID: 18346197
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 23.