These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


289 related items for PubMed ID: 16706596

  • 1. Accumulation of E. Coli bacteria in mini-channel flow.
    Mayeed MS, Mian A, Auner GW, Newaz GM.
    J Biomech Eng; 2006 Jun; 128(3):458-61. PubMed ID: 16706596
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Szilard's dream.
    Balaban NQ.
    Nat Methods; 2005 Sep; 2(9):648-9. PubMed ID: 16118633
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Micro/Nanofluidic device for single-cell-based assay.
    Yun KS, Yoon E.
    Biomed Microdevices; 2005 Mar; 7(1):35-40. PubMed ID: 15834518
    [Abstract] [Full Text] [Related]

  • 6. Cell docking inside microwells within reversibly sealed microfluidic channels for fabricating multiphenotype cell arrays.
    Khademhosseini A, Yeh J, Eng G, Karp J, Kaji H, Borenstein J, Farokhzad OC, Langer R.
    Lab Chip; 2005 Dec; 5(12):1380-6. PubMed ID: 16286969
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. A microfluidic platform for 3-dimensional cell culture and cell-based assays.
    Kim MS, Yeon JH, Park JK.
    Biomed Microdevices; 2007 Feb; 9(1):25-34. PubMed ID: 17103048
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. High-throughput microfluidic system for long-term bacterial colony monitoring and antibiotic testing in zero-flow environments.
    Sun P, Liu Y, Sha J, Zhang Z, Tu Q, Chen P, Wang J.
    Biosens Bioelectron; 2011 Jan 15; 26(5):1993-9. PubMed ID: 20880691
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Microfluidic sorting system based on optical waveguide integration and diode laser bar trapping.
    Applegate RW, Squier J, Vestad T, Oakey J, Marr DW, Bado P, Dugan MA, Said AA.
    Lab Chip; 2006 Mar 15; 6(3):422-6. PubMed ID: 16511626
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. A microfluidic device based on gravity and electric force driving for flow cytometry and fluorescence activated cell sorting.
    Yao B, Luo GA, Feng X, Wang W, Chen LX, Wang YM.
    Lab Chip; 2004 Dec 15; 4(6):603-7. PubMed ID: 15570372
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Soft inertial microfluidics for high throughput separation of bacteria from human blood cells.
    Wu Z, Willing B, Bjerketorp J, Jansson JK, Hjort K.
    Lab Chip; 2009 May 07; 9(9):1193-9. PubMed ID: 19370236
    [Abstract] [Full Text] [Related]

  • 19. Macro- and microscale fluid flow systems for endothelial cell biology.
    Young EW, Simmons CA.
    Lab Chip; 2010 Jan 21; 10(2):143-60. PubMed ID: 20066241
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 15.