These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


231 related items for PubMed ID: 16707958

  • 21. Computational fluid dynamics in abdominal aorta bifurcation: non-Newtonian versus Newtonian blood flow in a real case study.
    Soares AA, Gonzaga S, Oliveira C, Simões A, Rouboa AI.
    Comput Methods Biomech Biomed Engin; 2017 Jun; 20(8):822-831. PubMed ID: 28367643
    [Abstract] [Full Text] [Related]

  • 22. Numerical investigation of different viscosity models on pulsatile blood flow of thoracic aortic aneurysm (TAA) in a patient-specific model.
    Faraji A, Sahebi M, SalavatiDezfouli S.
    Comput Methods Biomech Biomed Engin; 2023 Jun; 26(8):986-998. PubMed ID: 35882063
    [Abstract] [Full Text] [Related]

  • 23. Compliant model of a coupled sequential coronary arterial bypass graft: effects of vessel wall elasticity and non-Newtonian rheology on blood flow regime and hemodynamic parameters distribution.
    Kabinejadian F, Ghista DN.
    Med Eng Phys; 2012 Sep; 34(7):860-72. PubMed ID: 22032834
    [Abstract] [Full Text] [Related]

  • 24. Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress.
    Ku DN, Giddens DP, Zarins CK, Glagov S.
    Arteriosclerosis; 1985 Sep; 5(3):293-302. PubMed ID: 3994585
    [Abstract] [Full Text] [Related]

  • 25. Experimental and CFD flow studies in an intracranial aneurysm model with Newtonian and non-Newtonian fluids.
    Frolov SV, Sindeev SV, Liepsch D, Balasso A.
    Technol Health Care; 2016 May 18; 24(3):317-33. PubMed ID: 26835725
    [Abstract] [Full Text] [Related]

  • 26. The influence of flow, vessel diameter, and non-newtonian blood viscosity on the wall shear stress in a carotid bifurcation model for unsteady flow.
    Box FM, van der Geest RJ, Rutten MC, Reiber JH.
    Invest Radiol; 2005 May 18; 40(5):277-94. PubMed ID: 15829825
    [Abstract] [Full Text] [Related]

  • 27. Numerical simulation of blood pulsatile flow in a stenosed carotid artery using different rheological models.
    Razavi A, Shirani E, Sadeghi MR.
    J Biomech; 2011 Jul 28; 44(11):2021-30. PubMed ID: 21696742
    [Abstract] [Full Text] [Related]

  • 28. Time dependent non-Newtonian numerical study of the flow field in a realistic model of aortic arch.
    Del Gaudio C, Morbiducci U, Grigioni M.
    Int J Artif Organs; 2006 Jul 28; 29(7):709-18. PubMed ID: 16874678
    [Abstract] [Full Text] [Related]

  • 29.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 30.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 31.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 32.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 33.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 34.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 35.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 36.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 37.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 38. Alterations in regional vascular geometry produced by theoretical stent implantation influence distributions of wall shear stress: analysis of a curved coronary artery using 3D computational fluid dynamics modeling.
    LaDisa JF, Olson LE, Douglas HA, Warltier DC, Kersten JR, Pagel PS.
    Biomed Eng Online; 2006 Jun 16; 5():40. PubMed ID: 16780592
    [Abstract] [Full Text] [Related]

  • 39.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 40.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 12.