These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


211 related items for PubMed ID: 16708471

  • 1. The effect of longitudinal pre-stretch and radial constraint on the stress distribution in the vessel wall: a new hypothesis.
    Zhang W, Herrera C, Atluri SN, Kassab GS.
    Mech Chem Biosyst; 2005; 2(1):41-52. PubMed ID: 16708471
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Pipette aspiration technique for the measurement of nonlinear and anisotropic mechanical properties of blood vessel walls under biaxial stretch.
    Ohashi T, Abe H, Matsumoto T, Sato M.
    J Biomech; 2005 Nov; 38(11):2248-56. PubMed ID: 16154412
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Are intramural suction-squeezing effects generated by the variations in radial wall stress during each heart beat the motor of atherosclerosis? A new concept.
    Doriot PA.
    Med Hypotheses; 2007 Nov; 68(4):781-98. PubMed ID: 17070656
    [Abstract] [Full Text] [Related]

  • 8. A new three-dimensional exponential material model of the coronary arterial wall to include shear stress due to torsion.
    Van Epps JS, Vorp DA.
    J Biomech Eng; 2008 Oct; 130(5):051001. PubMed ID: 19045508
    [Abstract] [Full Text] [Related]

  • 9. Passive mechanical properties of porcine left circumflex artery and its mathematical description.
    Carboni M, Desch GW, Weizsäcker HW.
    Med Eng Phys; 2007 Jan; 29(1):8-16. PubMed ID: 16497534
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Two-layered quasi-3D finite element model of the oesophagus.
    Liao D, Zhao J, Fan Y, Gregersen H.
    Med Eng Phys; 2004 Sep; 26(7):535-43. PubMed ID: 15271281
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Growth, anisotropy, and residual stresses in arteries.
    Volokh KY, Lev Y.
    Mech Chem Biosyst; 2005 Sep; 2(1):27-40. PubMed ID: 16708470
    [Abstract] [Full Text] [Related]

  • 16. Elastic and rupture properties of porcine aortic tissue measured using inflation testing.
    Marra SP, Kennedy FE, Kinkaid JN, Fillinger MF.
    Cardiovasc Eng; 2006 Dec; 6(4):123-31. PubMed ID: 17136596
    [Abstract] [Full Text] [Related]

  • 17. Parametric finite element analysis of physical stimuli resulting from mechanical stimulation of tissue engineered cartilage.
    Babalola OM, Bonassar LJ.
    J Biomech Eng; 2009 Jun; 131(6):061014. PubMed ID: 19449968
    [Abstract] [Full Text] [Related]

  • 18. Shear modulus of porcine coronary artery in reference to a new strain measure.
    Zhang W, Lu X, Kassab GS.
    Biomaterials; 2007 Nov; 28(31):4733-8. PubMed ID: 17669488
    [Abstract] [Full Text] [Related]

  • 19. A structural model of the venous wall considering elastin anisotropy.
    Rezakhaniha R, Stergiopulos N.
    J Biomech Eng; 2008 Jun; 130(3):031017. PubMed ID: 18532866
    [Abstract] [Full Text] [Related]

  • 20. Stress distributions in vascular aneurysms: factors affecting risk of aneurysm rupture.
    Mower WR, Baraff LJ, Sneyd J.
    J Surg Res; 1993 Aug; 55(2):155-61. PubMed ID: 8412094
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.