These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


198 related items for PubMed ID: 16712374

  • 1. Thermal conductance of hydrophilic and hydrophobic interfaces.
    Ge Z, Cahill DG, Braun PV.
    Phys Rev Lett; 2006 May 12; 96(18):186101. PubMed ID: 16712374
    [Abstract] [Full Text] [Related]

  • 2. Pressure dependence of Kapitza resistance at gold/water and silicon/water interfaces.
    Pham A, Barisik M, Kim B.
    J Chem Phys; 2013 Dec 28; 139(24):244702. PubMed ID: 24387383
    [Abstract] [Full Text] [Related]

  • 3. Origin of Hydrophilic Surface Functionalization-Induced Thermal Conductance Enhancement across Solid-Water Interfaces.
    Huang D, Ma R, Zhang T, Luo T.
    ACS Appl Mater Interfaces; 2018 Aug 22; 10(33):28159-28165. PubMed ID: 30056700
    [Abstract] [Full Text] [Related]

  • 4. How wetting and adhesion affect thermal conductance of a range of hydrophobic to hydrophilic aqueous interfaces.
    Shenogina N, Godawat R, Keblinski P, Garde S.
    Phys Rev Lett; 2009 Apr 17; 102(15):156101. PubMed ID: 19518653
    [Abstract] [Full Text] [Related]

  • 5. Temperature Dependent Thermal Conductivity and Thermal Interface Resistance of Pentacene Thin Films with Varying Morphology.
    Epstein J, Ong WL, Bettinger CJ, Malen JA.
    ACS Appl Mater Interfaces; 2016 Jul 27; 8(29):19168-74. PubMed ID: 27391107
    [Abstract] [Full Text] [Related]

  • 6. Enhancing the Thermal Conductance of Polymer and Sapphire Interface via Self-Assembled Monolayer.
    Zheng K, Sun F, Zhu J, Ma Y, Li X, Tang D, Wang F, Wang X.
    ACS Nano; 2016 Aug 23; 10(8):7792-8. PubMed ID: 27501117
    [Abstract] [Full Text] [Related]

  • 7. Vibrational mismatch of metal leads controls thermal conductance of self-assembled monolayer junctions.
    Majumdar S, Sierra-Suarez JA, Schiffres SN, Ong WL, Higgs CF, McGaughey AJ, Malen JA.
    Nano Lett; 2015 May 13; 15(5):2985-91. PubMed ID: 25884912
    [Abstract] [Full Text] [Related]

  • 8. Reducing Kapitza resistance between graphene/water interface via interfacial superlattice structure.
    Peng X, Jiang P, Ouyang Y, Lu S, Ren W, Chen J.
    Nanotechnology; 2021 Oct 29; 33(3):. PubMed ID: 34644695
    [Abstract] [Full Text] [Related]

  • 9. Heat transfer in protein-water interfaces.
    Lervik A, Bresme F, Kjelstrup S, Bedeaux D, Miguel Rubi J.
    Phys Chem Chem Phys; 2010 Feb 21; 12(7):1610-7. PubMed ID: 20126777
    [Abstract] [Full Text] [Related]

  • 10. Low-Cost Nanostructures from Nanoparticle-Assisted Large-Scale Lithography Significantly Enhance Thermal Energy Transport across Solid Interfaces.
    Lee E, Menumerov E, Hughes RA, Neretina S, Luo T.
    ACS Appl Mater Interfaces; 2018 Oct 10; 10(40):34690-34698. PubMed ID: 30209944
    [Abstract] [Full Text] [Related]

  • 11. Molecular Fin Effect from Heterogeneous Self-Assembled Monolayer Enhances Thermal Conductance across Hard-Soft Interfaces.
    Wei X, Zhang T, Luo T.
    ACS Appl Mater Interfaces; 2017 Oct 04; 9(39):33740-33748. PubMed ID: 28885818
    [Abstract] [Full Text] [Related]

  • 12. Thickness-Independent Vibrational Thermal Conductance across Confined Solid-Solution Thin Films.
    Giri A, Cheaito R, Gaskins JT, Mimura T, Brown-Shaklee HJ, Medlin DL, Ihlefeld JF, Hopkins PE.
    ACS Appl Mater Interfaces; 2021 Mar 17; 13(10):12541-12549. PubMed ID: 33663216
    [Abstract] [Full Text] [Related]

  • 13. Tuning Water Slip Behavior in Nanochannels Using Self-Assembled Monolayers.
    Huang D, Zhang T, Xiong G, Xu L, Qu Z, Lee E, Luo T.
    ACS Appl Mater Interfaces; 2019 Sep 04; 11(35):32481-32488. PubMed ID: 31408315
    [Abstract] [Full Text] [Related]

  • 14. Polymeric Self-Assembled Monolayers Anomalously Improve Thermal Transport across Graphene/Polymer Interfaces.
    Zhang L, Liu L.
    ACS Appl Mater Interfaces; 2017 Aug 30; 9(34):28949-28958. PubMed ID: 28766936
    [Abstract] [Full Text] [Related]

  • 15. Remarkable enhancement in the Kapitza resistance and electron potential barrier of chemically modified In2O3(ZnO)9 natural superlattice interfaces.
    Liang X.
    Phys Chem Chem Phys; 2015 Nov 28; 17(44):29655-60. PubMed ID: 26477746
    [Abstract] [Full Text] [Related]

  • 16. Nonlocal thermal transport across embedded few-layer graphene sheets.
    Liu Y, Huxtable ST, Yang B, Sumpter BG, Qiao R.
    J Phys Condens Matter; 2014 Dec 17; 26(50):502101. PubMed ID: 25393230
    [Abstract] [Full Text] [Related]

  • 17. Assessment and prediction of thermal transport at solid-self-assembled monolayer junctions.
    Duda JC, Saltonstall CB, Norris PM, Hopkins PE.
    J Chem Phys; 2011 Mar 07; 134(9):094704. PubMed ID: 21384994
    [Abstract] [Full Text] [Related]

  • 18. Effect of crystallinity on thermal transport in textured lead zirconate titanate thin films.
    Varghese R, Harikrishna H, Huxtable ST, Reynolds WT, Priya S.
    ACS Appl Mater Interfaces; 2014 May 14; 6(9):6748-56. PubMed ID: 24689852
    [Abstract] [Full Text] [Related]

  • 19. Water and ice in contact with octadecyl-trichlorosilane functionalized surfaces: a high resolution x-ray reflectivity study.
    Mezger M, Schöder S, Reichert H, Schröder H, Okasinski J, Honkimäki V, Ralston J, Bilgram J, Roth R, Dosch H.
    J Chem Phys; 2008 Jun 28; 128(24):244705. PubMed ID: 18601363
    [Abstract] [Full Text] [Related]

  • 20. Nanostructures Significantly Enhance Thermal Transport across Solid Interfaces.
    Lee E, Zhang T, Yoo T, Guo Z, Luo T.
    ACS Appl Mater Interfaces; 2016 Dec 28; 8(51):35505-35512. PubMed ID: 27983798
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.