These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


792 related items for PubMed ID: 16713567

  • 1. Glia-derived D-serine controls NMDA receptor activity and synaptic memory.
    Panatier A, Theodosis DT, Mothet JP, Touquet B, Pollegioni L, Poulain DA, Oliet SH.
    Cell; 2006 May 19; 125(4):775-84. PubMed ID: 16713567
    [Abstract] [Full Text] [Related]

  • 2. Astrocytes put down the broom and pick up the baton.
    Diamond JS.
    Cell; 2006 May 19; 125(4):639-41. PubMed ID: 16713554
    [Abstract] [Full Text] [Related]

  • 3. Regulation of N-methyl-D-aspartate receptors by astrocytic D-serine.
    Oliet SH, Mothet JP.
    Neuroscience; 2009 Jan 12; 158(1):275-83. PubMed ID: 18358625
    [Abstract] [Full Text] [Related]

  • 4. D-serine regulation of NMDA receptor activity.
    Wolosker H.
    Sci STKE; 2006 Oct 10; 2006(356):pe41. PubMed ID: 17033043
    [Abstract] [Full Text] [Related]

  • 5. Potentiation of the NMDA receptor-mediated responses through the activation of the glycine site by microglia secreting soluble factors.
    Hayashi Y, Ishibashi H, Hashimoto K, Nakanishi H.
    Glia; 2006 Apr 15; 53(6):660-8. PubMed ID: 16498631
    [Abstract] [Full Text] [Related]

  • 6. Functional neuronal-glial anatomical remodelling in the hypothalamus.
    Oliet SH, Panatier A, Piet R.
    Novartis Found Symp; 2006 Apr 15; 276():238-48; discussion 248-52, 275-81. PubMed ID: 16805434
    [Abstract] [Full Text] [Related]

  • 7. [Role of D-serine in the mammalian brain].
    Ying-Luan Z, Zhao YL, Mori H.
    Brain Nerve; 2007 Jul 15; 59(7):725-30. PubMed ID: 17663143
    [Abstract] [Full Text] [Related]

  • 8. Glutamate exocytosis from astrocytes controls synaptic strength.
    Jourdain P, Bergersen LH, Bhaukaurally K, Bezzi P, Santello M, Domercq M, Matute C, Tonello F, Gundersen V, Volterra A.
    Nat Neurosci; 2007 Mar 15; 10(3):331-9. PubMed ID: 17310248
    [Abstract] [Full Text] [Related]

  • 9. Contribution of astrocytes to hippocampal long-term potentiation through release of D-serine.
    Yang Y, Ge W, Chen Y, Zhang Z, Shen W, Wu C, Poo M, Duan S.
    Proc Natl Acad Sci U S A; 2003 Dec 09; 100(25):15194-9. PubMed ID: 14638938
    [Abstract] [Full Text] [Related]

  • 10. Is endogenous D-serine in the rostral anterior cingulate cortex necessary for pain-related negative affect?
    Ren WH, Guo JD, Cao H, Wang H, Wang PF, Sha H, Ji RR, Zhao ZQ, Zhang YQ.
    J Neurochem; 2006 Mar 09; 96(6):1636-47. PubMed ID: 16476080
    [Abstract] [Full Text] [Related]

  • 11. D-serine relieves chronic lead exposure-impaired long-term potentiation in the CA1 region of the rat hippocampus in vitro.
    Sun H, Wang HL, Wang S.
    Neurosci Lett; 2007 May 01; 417(2):118-22. PubMed ID: 17408856
    [Abstract] [Full Text] [Related]

  • 12. Gliotransmission at central glutamatergic synapses: D-serine on stage.
    Martineau M, Baux G, Mothet JP.
    J Physiol Paris; 2006 May 01; 99(2-3):103-10. PubMed ID: 16455236
    [Abstract] [Full Text] [Related]

  • 13. Synaptic potentiation induces increased glial coverage of excitatory synapses in CA1 hippocampus.
    Lushnikova I, Skibo G, Muller D, Nikonenko I.
    Hippocampus; 2009 Aug 01; 19(8):753-62. PubMed ID: 19156853
    [Abstract] [Full Text] [Related]

  • 14. [Endogenous D-serine in mammalian brains].
    Nishikawa T, Yamamoto N, Tsuchida H, Umino A, Kawaguchi N.
    Nihon Shinkei Seishin Yakurigaku Zasshi; 2000 Feb 01; 20(1):33-9. PubMed ID: 10890022
    [Abstract] [Full Text] [Related]

  • 15. The contribution of the NMDA receptor glycine site to rhythm generation during fictive swimming in Xenopus laevis tadpoles.
    Issberner JP, Sillar KT.
    Eur J Neurosci; 2007 Nov 01; 26(9):2556-64. PubMed ID: 17970719
    [Abstract] [Full Text] [Related]

  • 16. D-amino acids in the brain: D-serine in neurotransmission and neurodegeneration.
    Wolosker H, Dumin E, Balan L, Foltyn VN.
    FEBS J; 2008 Jul 01; 275(14):3514-26. PubMed ID: 18564180
    [Abstract] [Full Text] [Related]

  • 17. Long-term potentiation of high-frequency oscillation and synaptic transmission characterize in vitro NMDA receptor-dependent epileptogenesis in the hippocampus.
    Moschovos C, Kostopoulos G, Papatheodoropoulos C.
    Neurobiol Dis; 2008 Feb 01; 29(2):368-80. PubMed ID: 18035548
    [Abstract] [Full Text] [Related]

  • 18. Plasticity-dependent changes in metabotropic glutamate receptor expression at excitatory hippocampal synapses.
    Cheyne JE, Montgomery JM.
    Mol Cell Neurosci; 2008 Mar 01; 37(3):432-9. PubMed ID: 18191411
    [Abstract] [Full Text] [Related]

  • 19. Glycine binding primes NMDA receptor internalization.
    Nong Y, Huang YQ, Ju W, Kalia LV, Ahmadian G, Wang YT, Salter MW.
    Nature; 2003 Mar 20; 422(6929):302-7. PubMed ID: 12646920
    [Abstract] [Full Text] [Related]

  • 20. Oxytocin facilitates the induction of long-term potentiation in the accessory olfactory bulb.
    Fang LY, Quan RD, Kaba H.
    Neurosci Lett; 2008 Jun 20; 438(2):133-7. PubMed ID: 18468792
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 40.