These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


162 related items for PubMed ID: 16716505

  • 21. Adsorption of chromate by clinoptilolite exchanged with various metal cations.
    Faghihian H, Bowman RS.
    Water Res; 2005 Mar; 39(6):1099-104. PubMed ID: 15766964
    [Abstract] [Full Text] [Related]

  • 22.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 23.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 24.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 25.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 26.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 27. Removal of chromium from aqueous solution by using oxidized multiwalled carbon nanotubes.
    Hu J, Chen C, Zhu X, Wang X.
    J Hazard Mater; 2009 Mar 15; 162(2-3):1542-50. PubMed ID: 18650001
    [Abstract] [Full Text] [Related]

  • 28. Properties and applications of zeolites.
    Rhodes CJ.
    Sci Prog; 2010 Mar 15; 93(Pt 3):223-84. PubMed ID: 21047018
    [Abstract] [Full Text] [Related]

  • 29.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 30.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 31. The removal of phenol from aqueous solutions by adsorption using surfactant-modified bentonite and kaolinite.
    Alkaram UF, Mukhlis AA, Al-Dujaili AH.
    J Hazard Mater; 2009 Sep 30; 169(1-3):324-32. PubMed ID: 19464105
    [Abstract] [Full Text] [Related]

  • 32.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 33. Batch removal of chromium(VI) from aqueous solution by Turkish brown coals.
    Arslan G, Pehlivan E.
    Bioresour Technol; 2007 Nov 30; 98(15):2836-45. PubMed ID: 17113283
    [Abstract] [Full Text] [Related]

  • 34. In situ and ex situ study of the enhanced modification with iron of clinoptilolite-rich zeolitic tuff for arsenic sorption from aqueous solutions.
    Dávila-Jiménez MM, Elizalde-González MP, Mattusch J, Morgenstern P, Pérez-Cruz MA, Reyes-Ortega Y, Wennrich R, Yee-Madeira H.
    J Colloid Interface Sci; 2008 Jun 15; 322(2):527-36. PubMed ID: 18440546
    [Abstract] [Full Text] [Related]

  • 35. Retardation of chromate through packed columns of surfactant-modified zeolite.
    Li Z, Hong H.
    J Hazard Mater; 2009 Mar 15; 162(2-3):1487-93. PubMed ID: 18656307
    [Abstract] [Full Text] [Related]

  • 36. Sorption of Cr(VI) ions on two Lewatit-anion exchange resins and their quantitative determination using UV-visible spectrophotometer.
    Pehlivan E, Cetin S.
    J Hazard Mater; 2009 Apr 15; 163(1):448-53. PubMed ID: 18692308
    [Abstract] [Full Text] [Related]

  • 37. Investigation on natural and pretreated Bulgarian clinoptilolite for ammonium ions removal from aqueous solutions.
    Vassileva P, Voikova D.
    J Hazard Mater; 2009 Oct 30; 170(2-3):948-53. PubMed ID: 19524358
    [Abstract] [Full Text] [Related]

  • 38. Extra-framework cation release from heulandite-type rich tuffs on exchange with NH(4)(+).
    Kantiranis N, Sikalidis K, Godelitsas A, Squires C, Papastergios G, Filippidis A.
    J Environ Manage; 2011 Jun 30; 92(6):1569-76. PubMed ID: 21296480
    [Abstract] [Full Text] [Related]

  • 39. Removal of co-present chromate and arsenate by zero-valent iron in groundwater with humic acid and bicarbonate.
    Liu T, Rao P, Mak MS, Wang P, Lo IM.
    Water Res; 2009 May 30; 43(9):2540-8. PubMed ID: 19321187
    [Abstract] [Full Text] [Related]

  • 40. Grape waste as a biosorbent for removing Cr(VI) from aqueous solution.
    Chand R, Narimura K, Kawakita H, Ohto K, Watari T, Inoue K.
    J Hazard Mater; 2009 Apr 15; 163(1):245-50. PubMed ID: 18684562
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 9.