These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


115 related items for PubMed ID: 16719102

  • 21. Ethephon improved drought tolerance in maize seedlings by modulating cuticular wax biosynthesis and membrane stability.
    Yu H, Zhang Y, Xie Y, Wang Y, Duan L, Zhang M, Li Z.
    J Plant Physiol; 2017 Jul; 214():123-133. PubMed ID: 28482333
    [Abstract] [Full Text] [Related]

  • 22. Chlorination of the β-triketone herbicides tembotrione and sulcotrione: Kinetic and mechanistic study, transformation products identification and toxicity.
    Tawk A, Deborde M, Labanowski J, Gallard H.
    Water Res; 2015 Jun 01; 76():132-42. PubMed ID: 25813488
    [Abstract] [Full Text] [Related]

  • 23. Degradation and mineralization of sulcotrione and mesotrione in aqueous medium by the electro-Fenton process: a kinetic study.
    Murati M, Oturan N, Aaron JJ, Dirany A, Tassin B, Zdravkovski Z, Oturan MA.
    Environ Sci Pollut Res Int; 2012 Jun 01; 19(5):1563-73. PubMed ID: 22116735
    [Abstract] [Full Text] [Related]

  • 24. Primus (florasulam 50 G/L), a new triazolopyrimidine sulfonanilide herbicide to control broad-leaved weeds in maize when applied in early postemergence (1 to 6 leaf stage of maize). Preliminary results.
    Lepiece D, Salembier JF, Thompson A.
    Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet; 2001 Jun 01; 66(2b):681-704. PubMed ID: 12425093
    [Abstract] [Full Text] [Related]

  • 25. Maize glossy6 is involved in cuticular wax deposition and drought tolerance.
    Li L, Du Y, He C, Dietrich CR, Li J, Ma X, Wang R, Liu Q, Liu S, Wang G, Schnable PS, Zheng J.
    J Exp Bot; 2019 Jun 28; 70(12):3089-3099. PubMed ID: 30919902
    [Abstract] [Full Text] [Related]

  • 26. Photodegradation of sulcotrione in various aquatic environments and toxicity of its photoproducts for some marine micro-organisms.
    Chaabane H, Vulliet E, Joux F, Lantoine F, Conan P, Cooper JF, Coste CM.
    Water Res; 2007 Apr 28; 41(8):1781-9. PubMed ID: 17303209
    [Abstract] [Full Text] [Related]

  • 27. Emerging investigator series: sunlight photolysis of 2,4-D herbicides in systems simulating leaf surfaces.
    Su L, Sivey JD, Dai N.
    Environ Sci Process Impacts; 2018 Aug 16; 20(8):1123-1135. PubMed ID: 29974906
    [Abstract] [Full Text] [Related]

  • 28. Influence of soil properties on the adsorption-desorption of sulcotrione and its hydrolysis metabolites on various soils.
    Chaabane H, Cooper JF, Azouzi L, Coste CM.
    J Agric Food Chem; 2005 May 18; 53(10):4091-5. PubMed ID: 15884844
    [Abstract] [Full Text] [Related]

  • 29. Soil persistence of 4-HPPD-inhibitors in different soil types.
    Maeghe L, Eelen H, Bulcke R.
    Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet; 2002 May 18; 67(3):383-91. PubMed ID: 12696405
    [Abstract] [Full Text] [Related]

  • 30. Photodegradation of bentazon, clopyralid, and triclopyr on model leaves: importance of a systematic evaluation of pesticide photostability on crops.
    Eyheraguibel B, Ter Halle A, Richard C.
    J Agric Food Chem; 2009 Mar 11; 57(5):1960-6. PubMed ID: 19222158
    [Abstract] [Full Text] [Related]

  • 31.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 32. Co-expression analysis aids in the identification of genes in the cuticular wax pathway in maize.
    Zheng J, He C, Qin Y, Lin G, Park WD, Sun M, Li J, Lu X, Zhang C, Yeh CT, Gunasekara CJ, Zeng E, Wei H, Schnable PS, Wang G, Liu S.
    Plant J; 2019 Feb 11; 97(3):530-542. PubMed ID: 30375131
    [Abstract] [Full Text] [Related]

  • 33.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 34. MYB94 and MYB96 Additively Activate Cuticular Wax Biosynthesis in Arabidopsis.
    Lee SB, Kim HU, Suh MC.
    Plant Cell Physiol; 2016 Nov 11; 57(11):2300-2311. PubMed ID: 27577115
    [Abstract] [Full Text] [Related]

  • 35. DEWAX-mediated transcriptional repression of cuticular wax biosynthesis in Arabidopsis thaliana.
    Suh MC, Go YS.
    Plant Signal Behav; 2014 Nov 11; 9(8):e29463. PubMed ID: 25763625
    [Abstract] [Full Text] [Related]

  • 36. Efficient removal of sulcotrione and its formulated compound Tangenta® in aqueous TiO2 suspension: Stability, photoproducts assessment and toxicity.
    Šojić DV, Orčić DZ, Četojević-Simin DD, Banić ND, Abramović BF.
    Chemosphere; 2015 Nov 11; 138():988-94. PubMed ID: 25563159
    [Abstract] [Full Text] [Related]

  • 37. Soil activity and persistence of sulcotrione and mesotrione.
    Maeghe L, Desmet EM, Bulcke R.
    Commun Agric Appl Biol Sci; 2004 Nov 11; 69(3):41-8. PubMed ID: 15759393
    [Abstract] [Full Text] [Related]

  • 38. Environmental fate of herbicides trifluralin, metazachlor, metamitron and sulcotrione compared with that of glyphosate, a substitute broad spectrum herbicide for different glyphosate-resistant crops.
    Mamy L, Barriuso E, Gabrielle B.
    Pest Manag Sci; 2005 Sep 11; 61(9):905-16. PubMed ID: 16041722
    [Abstract] [Full Text] [Related]

  • 39. Mesotrione: a new selective herbicide for use in maize.
    Mitchell G, Bartlett DW, Fraser TE, Hawkes TR, Holt DC, Townson JK, Wichert RA.
    Pest Manag Sci; 2001 Feb 11; 57(2):120-8. PubMed ID: 11455642
    [Abstract] [Full Text] [Related]

  • 40. Environmental Metabolic Footprinting: A novel application to study the impact of a natural and a synthetic β-triketone herbicide in soil.
    Patil C, Calvayrac C, Zhou Y, Romdhane S, Salvia MV, Cooper JF, Dayan FE, Bertrand C.
    Sci Total Environ; 2016 Oct 01; 566-567():552-558. PubMed ID: 27236620
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 6.