These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


258 related items for PubMed ID: 16719118

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Comparison of species sensitivity distributions derived from interspecies correlation models to distributions used to derive water quality criteria.
    Dyer SD, Versteeg DJ, Belanger SE, Chaney JG, Raimondo S, Barron MG.
    Environ Sci Technol; 2008 Apr 15; 42(8):3076-83. PubMed ID: 18497169
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Derivation of freshwater quality criteria for zinc using interspecies correlation estimation models to protect aquatic life in China.
    Feng CL, Wu FC, Dyer SD, Chang H, Zhao XL.
    Chemosphere; 2013 Jan 15; 90(3):1177-83. PubMed ID: 23058200
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Use of Interspecies Correlation Estimation (ICE) Models to Derive Water Quality Criteria of Microplastics for Protecting Aquatic Organisms.
    Wu J, Zhao X, Gao L, Li Y, Wang D.
    Int J Environ Res Public Health; 2022 Aug 19; 19(16):. PubMed ID: 36011942
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Original and improved interspecies correlation estimation models in China for potential application in water quality criteria.
    Wu J, Gao L, Jiang S, Jia N, Wang D, Wu J.
    Environ Sci Pollut Res Int; 2023 Feb 19; 30(8):21654-21660. PubMed ID: 36272001
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Advancing Fifth Percentile Hazard Concentration Estimation Using Toxicity-Normalized Species Sensitivity Distributions.
    Dhond AK, Barron MG.
    Environ Sci Technol; 2022 Dec 06; 56(23):17188-17196. PubMed ID: 36410104
    [Abstract] [Full Text] [Related]

  • 14. Acute Toxicity Prediction to Threatened and Endangered Species Using Interspecies Correlation Estimation (ICE) Models.
    Willming MM, Lilavois CR, Barron MG, Raimondo S.
    Environ Sci Technol; 2016 Oct 04; 50(19):10700-10707. PubMed ID: 27585402
    [Abstract] [Full Text] [Related]

  • 15. Development of acute toxicity quantitative structure activity relationships (QSAR) and their use in linear alkylbenzene sulfonate species sensitivity distributions.
    Belanger SE, Brill JL, Rawlings JM, Price BB.
    Chemosphere; 2016 Jul 04; 155():18-27. PubMed ID: 27105149
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Oryzias sinensis, a new model organism in the application of eco-toxicity and water quality criteria (WQC).
    Cui L, Fan M, Belanger S, Li J, Wang X, Fan B, Li W, Gao X, Chen J, Liu Z.
    Chemosphere; 2020 Dec 04; 261():127813. PubMed ID: 32768750
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. MOAtox: A comprehensive mode of action and acute aquatic toxicity database for predictive model development.
    Barron MG, Lilavois CR, Martin TM.
    Aquat Toxicol; 2015 Apr 04; 161():102-7. PubMed ID: 25700118
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 13.