These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
111 related items for PubMed ID: 16720276
41. Novel 4-amino-furo[2,3-d]pyrimidines as Tie-2 and VEGFR2 dual inhibitors. Miyazaki Y, Matsunaga S, Tang J, Maeda Y, Nakano M, Philippe RJ, Shibahara M, Liu W, Sato H, Wang L, Nolte RT. Bioorg Med Chem Lett; 2005 May 02; 15(9):2203-7. PubMed ID: 15837294 [Abstract] [Full Text] [Related]
42. Directed evolution of ATP binding proteins from a zinc finger domain by using mRNA display. Cho GS, Szostak JW. Chem Biol; 2006 Feb 02; 13(2):139-47. PubMed ID: 16492562 [Abstract] [Full Text] [Related]
43. Directed evolution of angiotensin II-inhibiting peptides using a microbead display. Gan R, Furuzawa S, Kojima T, Kanie K, Kato R, Okochi M, Honda H, Nakano H. J Biosci Bioeng; 2010 Apr 02; 109(4):411-7. PubMed ID: 20226387 [Abstract] [Full Text] [Related]
44. Isoindolinone ureas: a novel class of KDR kinase inhibitors. Curtin ML, Frey RR, Heyman HR, Sarris KA, Steinman DH, Holmes JH, Bousquet PF, Cunha GA, Moskey MD, Ahmed AA, Pease LJ, Glaser KB, Stewart KD, Davidsen SK, Michaelides MR. Bioorg Med Chem Lett; 2004 Sep 06; 14(17):4505-9. PubMed ID: 15357981 [Abstract] [Full Text] [Related]
45. A distinct strategy to generate high-affinity peptide binders to receptor tyrosine kinases. Shrivastava A, von Wronski MA, Sato AK, Dransfield DT, Sexton D, Bogdan N, Pillai R, Nanjappan P, Song B, Marinelli E, DeOliveira D, Luneau C, Devlin M, Muruganandam A, Abujoub A, Connelly G, Wu QL, Conley G, Chang Q, Tweedle MF, Ladner RC, Swenson RE, Nunn AD. Protein Eng Des Sel; 2005 Sep 06; 18(9):417-24. PubMed ID: 16087652 [Abstract] [Full Text] [Related]
46. Directed evolution of high-affinity antibody mimics using mRNA display. Xu L, Aha P, Gu K, Kuimelis RG, Kurz M, Lam T, Lim AC, Liu H, Lohse PA, Sun L, Weng S, Wagner RW, Lipovsek D. Chem Biol; 2002 Aug 06; 9(8):933-42. PubMed ID: 12204693 [Abstract] [Full Text] [Related]
47. In-vitro protein evolution by ribosome display and mRNA display. Lipovsek D, Plückthun A. J Immunol Methods; 2004 Jul 06; 290(1-2):51-67. PubMed ID: 15261571 [Abstract] [Full Text] [Related]
48. In vitro selection of multiple libraries created by genetic code reprogramming to discover macrocyclic peptides that antagonize VEGFR2 activity in living cells. Kawakami T, Ishizawa T, Fujino T, Reid PC, Suga H, Murakami H. ACS Chem Biol; 2013 Jul 06; 8(6):1205-14. PubMed ID: 23517428 [Abstract] [Full Text] [Related]
49. Generation and characterization of a human nanobody against VEGFR-2. Ma L, Gu K, Zhang CH, Chen XT, Jiang Y, Melcher K, Zhang J, Wang M, Xu HE. Acta Pharmacol Sin; 2016 Jun 06; 37(6):857-64. PubMed ID: 27108602 [Abstract] [Full Text] [Related]
50. Simultaneous targeting of two ligand-binding sites on VEGFR2 using biparatopic Affibody molecules results in dramatically improved affinity. Fleetwood F, Klint S, Hanze M, Gunneriusson E, Frejd FY, Ståhl S, Löfblom J. Sci Rep; 2014 Dec 17; 4():7518. PubMed ID: 25515662 [Abstract] [Full Text] [Related]
51. Multiple processing forms and their biological activities of a novel angiogenesis inhibitor vasohibin. Sonoda H, Ohta H, Watanabe K, Yamashita H, Kimura H, Sato Y. Biochem Biophys Res Commun; 2006 Apr 07; 342(2):640-6. PubMed ID: 16488400 [Abstract] [Full Text] [Related]
52. Covalent DNA display as a novel tool for directed evolution of proteins in vitro. Bertschinger J, Neri D. Protein Eng Des Sel; 2004 Sep 07; 17(9):699-707. PubMed ID: 15522920 [Abstract] [Full Text] [Related]
53. Increasing thermal stability and improving biodistribution of VEGFR2-binding affibody molecules by a combination of in silico and directed evolution approaches. Güler R, Svedmark SF, Abouzayed A, Orlova A, Löfblom J. Sci Rep; 2020 Oct 23; 10(1):18148. PubMed ID: 33097752 [Abstract] [Full Text] [Related]
54. Streamlining the Pipeline for Generation of Recombinant Affinity Reagents by Integrating the Affinity Maturation Step. Huang R, Gorman KT, Vinci CR, Dobrovetsky E, Gräslund S, Kay BK. Int J Mol Sci; 2015 Sep 30; 16(10):23587-603. PubMed ID: 26437402 [Abstract] [Full Text] [Related]
55. Mutational and biophysical robustness in a prestabilized monobody. Chandler PG, Tan LL, Porebski BT, Green JS, Riley BT, Broendum SS, Hoke DE, Falconer RJ, Munro TP, Buckle M, Jackson CJ, Buckle AM. J Biol Chem; 2021 Sep 30; 296():100447. PubMed ID: 33617878 [Abstract] [Full Text] [Related]
56. Liver progenitor cell and KDR. Han S, Goldman O, Gouon-Evans V. Cell Cycle; 2014 Sep 30; 13(7):1051-2. PubMed ID: 24553112 [No Abstract] [Full Text] [Related]
57. New genotype-phenotype linkages for directed evolution of functional proteins. Leemhuis H, Stein V, Griffiths AD, Hollfelder F. Curr Opin Struct Biol; 2005 Aug 30; 15(4):472-8. PubMed ID: 16043338 [Abstract] [Full Text] [Related]
58. Adnectins: engineered target-binding protein therapeutics. Lipovsek D. Protein Eng Des Sel; 2011 Jan 30; 24(1-2):3-9. PubMed ID: 21068165 [Abstract] [Full Text] [Related]
59. Target-binding proteins based on the 10th human fibronectin type III domain (¹⁰Fn3). Koide S, Koide A, Lipovšek D. Methods Enzymol; 2012 Jan 30; 503():135-56. PubMed ID: 22230568 [Abstract] [Full Text] [Related]
60. Engineering Calreticulin-Targeting Monobodies to Detect Immunogenic Cell Death in Cancer Chemotherapy. Zhang Y, Thangam R, You SH, Sultonova RD, Venu A, Min JJ, Hong Y. Cancers (Basel); 2021 Jun 04; 13(11):. PubMed ID: 34199835 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]