These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


118 related items for PubMed ID: 16723417

  • 1. Amperometric study of the kinetics of exocytosis in mouse adrenal slice chromaffin cells: physiological and methodological insights.
    Arroyo G, Fuentealba J, Sevane-Fernández N, Aldea M, García AG, Albillos A.
    J Neurophysiol; 2006 Sep; 96(3):1196-202. PubMed ID: 16723417
    [Abstract] [Full Text] [Related]

  • 2. Key role of the nicotinic receptor in neurotransmitter exocytosis in human chromaffin cells.
    Pérez-Alvarez A, Albillos A.
    J Neurochem; 2007 Dec; 103(6):2281-90. PubMed ID: 17883397
    [Abstract] [Full Text] [Related]

  • 3. A physiological view of the central and peripheral mechanisms that regulate the release of catecholamines at the adrenal medulla.
    de Diego AM, Gandía L, García AG.
    Acta Physiol (Oxf); 2008 Feb; 192(2):287-301. PubMed ID: 18005392
    [Abstract] [Full Text] [Related]

  • 4. Functional organization of chromaffin cells and cholinergic synaptic transmission in rat adrenal medulla.
    Kajiwara R, Sand O, Kidokoro Y, Barish ME, Iijima T.
    Jpn J Physiol; 1997 Oct; 47(5):449-64. PubMed ID: 9504132
    [Abstract] [Full Text] [Related]

  • 5. Native α6β4* nicotinic receptors control exocytosis in human chromaffin cells of the adrenal gland.
    Pérez-Alvarez A, Hernández-Vivanco A, McIntosh JM, Albillos A.
    FASEB J; 2012 Jan; 26(1):346-54. PubMed ID: 21917987
    [Abstract] [Full Text] [Related]

  • 6. Acetylcholine-induced calcium signalling in adrenaline- and noradrenaline-containing adrenal chromaffin cells.
    Zaika OL, Pochynyuk OM, Kostyuk PG, Yavorskaya EN, Lukyanetz EA.
    Arch Biochem Biophys; 2004 Apr 01; 424(1):23-32. PubMed ID: 15019833
    [Abstract] [Full Text] [Related]

  • 7. Calcium signaling and exocytosis in adrenal chromaffin cells.
    García AG, García-De-Diego AM, Gandía L, Borges R, García-Sancho J.
    Physiol Rev; 2006 Oct 01; 86(4):1093-131. PubMed ID: 17015485
    [Abstract] [Full Text] [Related]

  • 8. An activity-dependent increased role for L-type calcium channels in exocytosis is regulated by adrenergic signaling in chromaffin cells.
    Polo-Parada L, Chan SA, Smith C.
    Neuroscience; 2006 Dec 01; 143(2):445-59. PubMed ID: 16962713
    [Abstract] [Full Text] [Related]

  • 9. Regulation of exocytosis in chromaffin cells by trans-insertion of lysophosphatidylcholine and arachidonic acid into the outer leaflet of the cell membrane.
    Amatore C, Arbault S, Bouret Y, Guille M, Lemaître F, Verchier Y.
    Chembiochem; 2006 Dec 01; 7(12):1998-2003. PubMed ID: 17086558
    [Abstract] [Full Text] [Related]

  • 10. Quantitative investigations of amperometric spike feet suggest different controlling factors of the fusion pore in exocytosis at chromaffin cells.
    Amatore C, Arbault S, Bonifas I, Guille M.
    Biophys Chem; 2009 Aug 01; 143(3):124-31. PubMed ID: 19501951
    [Abstract] [Full Text] [Related]

  • 11. Differential variations in Ca2+ entry, cytosolic Ca2+ and membrane capacitance upon steady or action potential depolarizing stimulation of bovine chromaffin cells.
    de Diego AM, Arnáiz-Cot JJ, Hernández-Guijo JM, Gandía L, García AG.
    Acta Physiol (Oxf); 2008 Oct 01; 194(2):97-109. PubMed ID: 18485124
    [Abstract] [Full Text] [Related]

  • 12. Physiological aspects of exocytosis in chromaffin cells of the adrenal medulla.
    Aunis D, Langley K.
    Acta Physiol Scand; 1999 Oct 01; 167(2):89-97. PubMed ID: 10571543
    [Abstract] [Full Text] [Related]

  • 13. The quantal catecholamine release from mouse chromaffin cells challenged with repeated ACh pulses is regulated by the mitochondrial Na+ /Ca2+ exchanger.
    López-Gil A, Nanclares C, Méndez-López I, Martínez-Ramírez C, de Los Rios C, Padín-Nogueira JF, Montero M, Gandía L, García AG.
    J Physiol; 2017 Mar 15; 595(6):2129-2146. PubMed ID: 27982456
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Resolution of fusion pore formation in a cell-attached patch.
    Powell AD, Marrion NV.
    J Neurosci Methods; 2007 May 15; 162(1-2):272-81. PubMed ID: 17363067
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Faster kinetics of quantal catecholamine release in mouse chromaffin cells stimulated with acetylcholine, compared with other secretagogues.
    Calvo-Gallardo E, López-Gil Á, Méndez-López I, Martínez-Ramírez C, Padín JF, García AG.
    J Neurochem; 2016 Dec 15; 139(5):722-736. PubMed ID: 27649809
    [Abstract] [Full Text] [Related]

  • 18. A two-step model for acetylcholine control of exocytosis via nicotinic receptors.
    Arnáiz-Cot JJ, de Diego AM, Hernández-Guijo JM, Gandía L, García AG.
    Biochem Biophys Res Commun; 2008 Jan 18; 365(3):413-9. PubMed ID: 17981151
    [Abstract] [Full Text] [Related]

  • 19. Pituitary adenylate cyclase-activating peptide enhances electrical coupling in the mouse adrenal medulla.
    Hill J, Lee SK, Samasilp P, Smith C.
    Am J Physiol Cell Physiol; 2012 Aug 01; 303(3):C257-66. PubMed ID: 22592408
    [Abstract] [Full Text] [Related]

  • 20. Blockade of Ca2+ -activated K+ channels by galantamine can also contribute to the potentiation of catecholamine secretion from chromaffin cells.
    Alés E, Gullo F, Arias E, Olivares R, García AG, Wanke E, López MG.
    Eur J Pharmacol; 2006 Oct 24; 548(1-3):45-52. PubMed ID: 16949070
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.