These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


1098 related items for PubMed ID: 16729264

  • 1. Ab initio computational modeling of loops in G-protein-coupled receptors: lessons from the crystal structure of rhodopsin.
    Mehler EL, Hassan SA, Kortagere S, Weinstein H.
    Proteins; 2006 Aug 15; 64(3):673-90. PubMed ID: 16729264
    [Abstract] [Full Text] [Related]

  • 2. Ab initio computational modeling of long loops in G-protein coupled receptors.
    Kortagere S, Roy A, Mehler EL.
    J Comput Aided Mol Des; 2006 Aug 15; 20(7-8):427-36. PubMed ID: 16972169
    [Abstract] [Full Text] [Related]

  • 3. Agonist-induced conformational changes in bovine rhodopsin: insight into activation of G-protein-coupled receptors.
    Bhattacharya S, Hall SE, Vaidehi N.
    J Mol Biol; 2008 Oct 03; 382(2):539-55. PubMed ID: 18638482
    [Abstract] [Full Text] [Related]

  • 4. Prediction of protein loop conformations using multiscale modeling methods with physical energy scoring functions.
    Olson MA, Feig M, Brooks CL.
    J Comput Chem; 2008 Apr 15; 29(5):820-31. PubMed ID: 17876760
    [Abstract] [Full Text] [Related]

  • 5. Key issues in the computational simulation of GPCR function: representation of loop domains.
    Mehler EL, Periole X, Hassan SA, Weinstein H.
    J Comput Aided Mol Des; 2002 Nov 15; 16(11):841-53. PubMed ID: 12825797
    [Abstract] [Full Text] [Related]

  • 6. PREDICT modeling and in-silico screening for G-protein coupled receptors.
    Shacham S, Marantz Y, Bar-Haim S, Kalid O, Warshaviak D, Avisar N, Inbal B, Heifetz A, Fichman M, Topf M, Naor Z, Noiman S, Becker OM.
    Proteins; 2004 Oct 01; 57(1):51-86. PubMed ID: 15326594
    [Abstract] [Full Text] [Related]

  • 7. Discrimination of native loop conformations in membrane proteins: decoy library design and evaluation of effective energy scoring functions.
    Forrest LR, Woolf TB.
    Proteins; 2003 Sep 01; 52(4):492-509. PubMed ID: 12910450
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Development of an extended simulated annealing method: application to the modeling of complementary determining regions of immunoglobulins.
    Higo J, Collura V, Garnier J.
    Biopolymers; 1992 Jan 01; 32(1):33-43. PubMed ID: 1617148
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. X-ray diffraction of heavy-atom labelled two-dimensional crystals of rhodopsin identifies the position of cysteine 140 in helix 3 and cysteine 316 in helix 8.
    Mielke T, Villa C, Edwards PC, Schertler GF, Heyn MP.
    J Mol Biol; 2002 Feb 22; 316(3):693-709. PubMed ID: 11866527
    [Abstract] [Full Text] [Related]

  • 18. Structure of the rhodopsin dimer: a working model for G-protein-coupled receptors.
    Fotiadis D, Jastrzebska B, Philippsen A, Müller DJ, Palczewski K, Engel A.
    Curr Opin Struct Biol; 2006 Apr 22; 16(2):252-9. PubMed ID: 16567090
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 55.