These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


172 related items for PubMed ID: 16730025

  • 1. Biosynthesis of riboflavin: structure and properties of 2,5-diamino-6-ribosylamino-4(3H)-pyrimidinone 5'-phosphate reductase of Methanocaldococcus jannaschii.
    Chatwell L, Krojer T, Fidler A, Römisch W, Eisenreich W, Bacher A, Huber R, Fischer M.
    J Mol Biol; 2006 Jun 23; 359(5):1334-51. PubMed ID: 16730025
    [Abstract] [Full Text] [Related]

  • 2. The crystal structure of the bifunctional deaminase/reductase RibD of the riboflavin biosynthetic pathway in Escherichia coli: implications for the reductive mechanism.
    Stenmark P, Moche M, Gurmu D, Nordlund P.
    J Mol Biol; 2007 Oct 12; 373(1):48-64. PubMed ID: 17765262
    [Abstract] [Full Text] [Related]

  • 3. 2,5-diamino-6-ribitylamino-4(3H)-pyrimidinone 5'-phosphate synthases of fungi and archaea.
    Römisch-Margl W, Eisenreich W, Haase I, Bacher A, Fischer M.
    FEBS J; 2008 Sep 12; 275(17):4403-14. PubMed ID: 18671734
    [Abstract] [Full Text] [Related]

  • 4. The crystal structure of dihydrofolate reductase from Thermotoga maritima: molecular features of thermostability.
    Dams T, Auerbach G, Bader G, Jacob U, Ploom T, Huber R, Jaenicke R.
    J Mol Biol; 2000 Mar 31; 297(3):659-72. PubMed ID: 10731419
    [Abstract] [Full Text] [Related]

  • 5. Evolution of vitamin B2 biosynthesis. A novel class of riboflavin synthase in Archaea.
    Fischer M, Schott AK, Römisch W, Ramsperger A, Augustin M, Fidler A, Bacher A, Richter G, Huber R, Eisenreich W.
    J Mol Biol; 2004 Oct 08; 343(1):267-78. PubMed ID: 15381435
    [Abstract] [Full Text] [Related]

  • 6. An iron(II) dependent formamide hydrolase catalyzes the second step in the archaeal biosynthetic pathway to riboflavin and 7,8-didemethyl-8-hydroxy-5-deazariboflavin.
    Grochowski LL, Xu H, White RH.
    Biochemistry; 2009 May 19; 48(19):4181-8. PubMed ID: 19309161
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Evolution of vitamin B2 biosynthesis: structural and functional similarity between pyrimidine deaminases of eubacterial and plant origin.
    Fischer M, Römisch W, Saller S, Illarionov B, Richter G, Rohdich F, Eisenreich W, Bacher A.
    J Biol Chem; 2004 Aug 27; 279(35):36299-308. PubMed ID: 15208317
    [Abstract] [Full Text] [Related]

  • 9. Crystal structure of human L-xylulose reductase holoenzyme: probing the role of Asn107 with site-directed mutagenesis.
    El-Kabbani O, Ishikura S, Darmanin C, Carbone V, Chung RP, Usami N, Hara A.
    Proteins; 2004 May 15; 55(3):724-32. PubMed ID: 15103634
    [Abstract] [Full Text] [Related]

  • 10. Novel class III phosphoribosyl diphosphate synthase: structure and properties of the tetrameric, phosphate-activated, non-allosterically inhibited enzyme from Methanocaldococcus jannaschii.
    Kadziola A, Jepsen CH, Johansson E, McGuire J, Larsen S, Hove-Jensen B.
    J Mol Biol; 2005 Dec 09; 354(4):815-28. PubMed ID: 16288921
    [Abstract] [Full Text] [Related]

  • 11. Biosynthesis of riboflavin: characterization of the bifunctional deaminase-reductase of Escherichia coli and Bacillus subtilis.
    Richter G, Fischer M, Krieger C, Eberhardt S, Lüttgen H, Gerstenschläger I, Bacher A.
    J Bacteriol; 1997 Mar 09; 179(6):2022-8. PubMed ID: 9068650
    [Abstract] [Full Text] [Related]

  • 12. The pyrimidine nucleotide reductase step in riboflavin and F(420) biosynthesis in archaea proceeds by the eukaryotic route to riboflavin.
    Graupner M, Xu H, White RH.
    J Bacteriol; 2002 Apr 09; 184(7):1952-7. PubMed ID: 11889103
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Kinetic and mechanistic analysis of the Escherichia coli ribD-encoded bifunctional deaminase-reductase involved in riboflavin biosynthesis.
    Magalhães ML, Argyrou A, Cahill SM, Blanchard JS.
    Biochemistry; 2008 Jun 17; 47(24):6499-507. PubMed ID: 18500821
    [Abstract] [Full Text] [Related]

  • 16. Structural analysis of N-acetylglucosamine-6-phosphate deacetylase apoenzyme from Escherichia coli.
    Ferreira FM, Mendoza-Hernandez G, Castañeda-Bueno M, Aparicio R, Fischer H, Calcagno ML, Oliva G.
    J Mol Biol; 2006 Jun 02; 359(2):308-21. PubMed ID: 16630633
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Crystal structure and biochemical properties of the D-arabinose dehydrogenase from Sulfolobus solfataricus.
    Brouns SJ, Turnbull AP, Willemen HL, Akerboom J, van der Oost J.
    J Mol Biol; 2007 Aug 31; 371(5):1249-60. PubMed ID: 17610898
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Presence of Escherichia coli of a deaminase and a reductase involved in biosynthesis of riboflavin.
    Burrows RB, Brown GM.
    J Bacteriol; 1978 Nov 31; 136(2):657-67. PubMed ID: 30756
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.