These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


252 related items for PubMed ID: 16750238

  • 1. Cone phototransduction and growth of the ERG b-wave during light adaptation.
    Alexander KR, Raghuram A, Rajagopalan AS.
    Vision Res; 2006 Oct; 46(22):3941-8. PubMed ID: 16750238
    [Abstract] [Full Text] [Related]

  • 2. Activation phase of cone phototransduction and the flicker electroretinogram in retinitis pigmentosa.
    Alexander KR, Rajagopalan AS, Raghuram A, Fishman GA.
    Vision Res; 2006 Sep; 46(17):2773-85. PubMed ID: 16494917
    [Abstract] [Full Text] [Related]

  • 3. [Increase in the amplitude of the b-wave of the cone electroretinogram during light adaptation].
    Knobel U, Niemeyer G.
    Klin Monbl Augenheilkd; 1994 May; 204(5):430-4. PubMed ID: 8051892
    [Abstract] [Full Text] [Related]

  • 4. Using Silent Substitution to Track the Mesopic Transition From Rod- to Cone-Based Vision in Mice.
    Allen AE, Lucas RJ.
    Invest Ophthalmol Vis Sci; 2016 Jan 01; 57(1):276-87. PubMed ID: 26818794
    [Abstract] [Full Text] [Related]

  • 5. Subjects with unilateral neovascular AMD have bilateral delays in rod-mediated phototransduction activation kinetics and in dark adaptation recovery.
    Dimopoulos IS, Tennant M, Johnson A, Fisher S, Freund PR, Sauvé Y.
    Invest Ophthalmol Vis Sci; 2013 Aug 05; 54(8):5186-95. PubMed ID: 23821195
    [Abstract] [Full Text] [Related]

  • 6. Cone Photoreceptor Dysfunction in Early-Stage Diabetic Retinopathy: Association Between the Activation Phase of Cone Phototransduction and the Flicker Electroretinogram.
    McAnany JJ, Park JC.
    Invest Ophthalmol Vis Sci; 2019 Jan 02; 60(1):64-72. PubMed ID: 30640972
    [Abstract] [Full Text] [Related]

  • 7. Contribution of proximal retinal neurons to b- and d-waves of frog electroretinogram under different conditions of light adaptation.
    Popova E, Kupenova P.
    Vision Res; 2009 Jul 02; 49(15):2001-10. PubMed ID: 19463849
    [Abstract] [Full Text] [Related]

  • 8. Cone electroretinogram amplitude growth with light adaptation in patients with retinitis pigmentosa.
    Yamamoto S, Hayashi M, Takeuchi S.
    Acta Ophthalmol Scand; 2000 Aug 02; 78(4):403-6. PubMed ID: 10990040
    [Abstract] [Full Text] [Related]

  • 9. Influence of the rod photoresponse on light adaptation and circadian rhythmicity in the cone ERG.
    Cameron MA, Lucas RJ.
    Mol Vis; 2009 Oct 30; 15():2209-16. PubMed ID: 19898639
    [Abstract] [Full Text] [Related]

  • 10. [Adaptational changes in cone electroretinograms in man].
    Iijima H, Yamaguchi S.
    Nippon Ganka Gakkai Zasshi; 1990 Nov 30; 94(11):987-92. PubMed ID: 2075875
    [Abstract] [Full Text] [Related]

  • 11. Light adaptation, rods, and the human cone flicker ERG.
    Peachey NS, Alexander KR, Derlacki DJ, Fishman GA.
    Vis Neurosci; 1992 Feb 30; 8(2):145-50. PubMed ID: 1558826
    [Abstract] [Full Text] [Related]

  • 12. Origin of electroretinogram amplitude growth during light adaptation in pigmented rats.
    Bui BV, Fortune B.
    Vis Neurosci; 2006 Feb 30; 23(2):155-67. PubMed ID: 16638169
    [Abstract] [Full Text] [Related]

  • 13. Electrophysiological measures of dysfunction in early-stage diabetic retinopathy: No correlation between cone phototransduction and oscillatory potential abnormalities.
    McAnany JJ, Liu K, Park JC.
    Doc Ophthalmol; 2020 Feb 30; 140(1):31-42. PubMed ID: 31512016
    [Abstract] [Full Text] [Related]

  • 14. Cone ERG Changes During Light Adaptation in Two All-Cone Mutant Mice: Implications for Rod-Cone Pathway Interactions.
    Bush RA, Tanikawa A, Zeng Y, Sieving PA.
    Invest Ophthalmol Vis Sci; 2019 Aug 01; 60(10):3680-3688. PubMed ID: 31469895
    [Abstract] [Full Text] [Related]

  • 15. The d-wave of the rod electroretinogram of rat originates in the cone pathway.
    Naarendorp F, Williams GE.
    Vis Neurosci; 1999 Aug 01; 16(1):91-105. PubMed ID: 10022481
    [Abstract] [Full Text] [Related]

  • 16. On-response deficit in the electroretinogram of the cone system in X-linked retinoschisis.
    Alexander KR, Fishman GA, Barnes CS, Grover S.
    Invest Ophthalmol Vis Sci; 2001 Feb 01; 42(2):453-9. PubMed ID: 11157882
    [Abstract] [Full Text] [Related]

  • 17. Cone properties of the light-adapted murine ERG.
    Ekesten B, Gouras P, Moschos M.
    Doc Ophthalmol; 2001 Feb 01; 97(1):23-31. PubMed ID: 10710239
    [Abstract] [Full Text] [Related]

  • 18. Factors that influence the increase in the electroretinogram 30-Hz flicker amplitude during light adaptation.
    Raether K, Zrenner E.
    Ger J Ophthalmol; 1996 Sep 01; 5(5):285-8. PubMed ID: 8911951
    [Abstract] [Full Text] [Related]

  • 19. Rapid and slow changes in the human cone electroretinogram during light and dark adaptation.
    Peachey NS, Arakawa K, Alexander KR, Marchese AL.
    Vision Res; 1992 Nov 01; 32(11):2049-53. PubMed ID: 1304082
    [Abstract] [Full Text] [Related]

  • 20. Amplitude increase of the multifocal electroretinogram during light adaptation.
    Kondo M, Miyake Y, Piao CH, Tanikawa A, Horiguchi M, Terasaki H.
    Invest Ophthalmol Vis Sci; 1999 Oct 01; 40(11):2633-7. PubMed ID: 10509660
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 13.