These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


160 related items for PubMed ID: 16750541

  • 1. Phenotypic plasticity of thermal tolerances in five oribatid mite species from sub-Antarctic Marion Island.
    Deere JA, Sinclair BJ, Marshall DJ, Chown SL.
    J Insect Physiol; 2006 Jul; 52(7):693-700. PubMed ID: 16750541
    [Abstract] [Full Text] [Related]

  • 2. Acclimation effects on thermal tolerances of springtails from sub-Antarctic Marion Island: indigenous and invasive species.
    Slabber S, Worland MR, Leinaas HP, Chown SL.
    J Insect Physiol; 2007 Feb; 53(2):113-25. PubMed ID: 17222862
    [Abstract] [Full Text] [Related]

  • 3. Testing the beneficial acclimation hypothesis and its alternatives for locomotor performance.
    Deere JA, Chown SL.
    Am Nat; 2006 Nov; 168(5):630-44. PubMed ID: 17080362
    [Abstract] [Full Text] [Related]

  • 4. Plasticity and superplasticity in the acclimation potential of the Antarctic mite Halozetes belgicae (Michael).
    Hawes TC, Bale JS, Worland MR, Convey P.
    J Exp Biol; 2007 Feb; 210(Pt 4):593-601. PubMed ID: 17267645
    [Abstract] [Full Text] [Related]

  • 5. Life stage-related differences in hardening and acclimation of thermal tolerance traits in the kelp fly, Paractora dreuxi (Diptera, Helcomyzidae).
    Marais E, Terblanche JS, Chown SL.
    J Insect Physiol; 2009 Apr; 55(4):336-43. PubMed ID: 19171152
    [Abstract] [Full Text] [Related]

  • 6. Stage-related variation in rapid cold hardening as a test of the environmental predictability hypothesis.
    Terblanche JS, Marais E, Chown SL.
    J Insect Physiol; 2007 May; 53(5):455-62. PubMed ID: 17368475
    [Abstract] [Full Text] [Related]

  • 7. Beneficial acclimation and the Bogert effect.
    Marais E, Chown SL.
    Ecol Lett; 2008 Oct; 11(10):1027-36. PubMed ID: 18616546
    [Abstract] [Full Text] [Related]

  • 8. Inertia in physiological traits: Embryonopsis halticella caterpillars (Yponomeutidae) across the Antarctic Polar Frontal Zone.
    Klok CJ, Chown SL.
    J Insect Physiol; 2005 Jan; 51(1):87-97. PubMed ID: 15686650
    [Abstract] [Full Text] [Related]

  • 9. Two-dimensional gel analysis of the heat-shock response in marine snails (genus Tegula): interspecific variation in protein expression and acclimation ability.
    Tomanek L.
    J Exp Biol; 2005 Aug; 208(Pt 16):3133-43. PubMed ID: 16081611
    [Abstract] [Full Text] [Related]

  • 10. Environmental physiology of three species of Collembola at Cape Hallett, North Victoria Land, Antarctica.
    Sinclair BJ, Terblanche JS, Scott MB, Blatch GL, Jaco Klok C, Chown SL.
    J Insect Physiol; 2006 Jan; 52(1):29-50. PubMed ID: 16246360
    [Abstract] [Full Text] [Related]

  • 11. Phenotypic flexibility in the basal metabolic rate of laughing doves: responses to short-term thermal acclimation.
    McKechnie AE, Chetty K, Lovegrove BG.
    J Exp Biol; 2007 Jan; 210(Pt 1):97-106. PubMed ID: 17170153
    [Abstract] [Full Text] [Related]

  • 12. Deleterious effects of repeated cold exposure in a freeze-tolerant sub-Antarctic caterpillar.
    Sinclair BJ, Chown SL.
    J Exp Biol; 2005 Mar; 208(Pt 5):869-79. PubMed ID: 15755885
    [Abstract] [Full Text] [Related]

  • 13. The effect of acclimation temperature on thermal activity thresholds in polar terrestrial invertebrates.
    Everatt MJ, Bale JS, Convey P, Worland MR, Hayward SA.
    J Insect Physiol; 2013 Oct; 59(10):1057-64. PubMed ID: 23973412
    [Abstract] [Full Text] [Related]

  • 14. Desiccation stress at sub-zero temperatures in polar terrestrial arthropods.
    Worland MR, Block W.
    J Insect Physiol; 2003 Mar; 49(3):193-203. PubMed ID: 12769994
    [Abstract] [Full Text] [Related]

  • 15. Experimental studies of ice nucleation in an Antarctic springtail (Collembola, Isotomidae).
    Block W, Worland MR.
    Cryobiology; 2001 May; 42(3):170-81. PubMed ID: 11578116
    [Abstract] [Full Text] [Related]

  • 16. The effects of acclimation on thermal tolerance, desiccation resistance and metabolic rate in Chirodica chalcoptera (Coleoptera: Chrysomelidae).
    Terblanche JS, Sinclair BJ, Jaco Klok C, McFarlane ML, Chown SL.
    J Insect Physiol; 2005 Sep; 51(9):1013-23. PubMed ID: 15955537
    [Abstract] [Full Text] [Related]

  • 17. The relationship between gut contents and supercooling capacity in hatchling painted turtles (Chrysemys picta).
    Packard GC, Packard MJ.
    Comp Biochem Physiol A Mol Integr Physiol; 2006 May; 144(1):98-104. PubMed ID: 16580240
    [Abstract] [Full Text] [Related]

  • 18. Heat tolerance and its plasticity in Antarctic fishes.
    Bilyk KT, Devries AL.
    Comp Biochem Physiol A Mol Integr Physiol; 2011 Apr; 158(4):382-90. PubMed ID: 21159323
    [Abstract] [Full Text] [Related]

  • 19. Acclimation and thermal tolerance in Antarctic marine ectotherms.
    Peck LS, Morley SA, Richard J, Clark MS.
    J Exp Biol; 2014 Jan 01; 217(Pt 1):16-22. PubMed ID: 24353200
    [Abstract] [Full Text] [Related]

  • 20. Antarctic fish can compensate for rising temperatures: thermal acclimation of cardiac performance in Pagothenia borchgrevinki.
    Franklin CE, Davison W, Seebacher F.
    J Exp Biol; 2007 Sep 01; 210(Pt 17):3068-74. PubMed ID: 17704081
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.