These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


108 related items for PubMed ID: 16750567

  • 1. Porin of Shigella dysenteriae activates mouse peritoneal macrophage through Toll-like receptors 2 and 6 to induce polarized type I response.
    Biswas A, Banerjee P, Mukherjee G, Biswas T.
    Mol Immunol; 2007 Feb; 44(5):812-20. PubMed ID: 16750567
    [Abstract] [Full Text] [Related]

  • 2. Porin-incorporated liposome induces Toll-like receptors 2- and 6-dependent maturation and type 1 response of dendritic cell.
    Banerjee P, Biswas A, Biswas T.
    Int Immunol; 2008 Dec; 20(12):1551-63. PubMed ID: 18931363
    [Abstract] [Full Text] [Related]

  • 3. Up-regulation of CD80-CD86 and IgA on mouse peritoneal B-1 cells by porin of Shigella dysenteriae is Toll-like receptors 2 and 6 dependent.
    Ray A, Karmakar P, Biswas T.
    Mol Immunol; 2004 Nov; 41(12):1167-75. PubMed ID: 15482852
    [Abstract] [Full Text] [Related]

  • 4. 34 kDa MOMP of Shigella flexneri promotes TLR2 mediated macrophage activation with the engagement of NF-kappaB and p38 MAP kinase signaling.
    Pore D, Mahata N, Pal A, Chakrabarti MK.
    Mol Immunol; 2010 May; 47(9):1739-46. PubMed ID: 20347487
    [Abstract] [Full Text] [Related]

  • 5. Porin of Shigella dysenteriae enhances Toll-like receptors 2 and 6 of mouse peritoneal B-2 cells and induces the expression of immunoglobulin M, immunoglobulin G2a and immunoglobulin A.
    Ray A, Biswas T.
    Immunology; 2005 Jan; 114(1):94-100. PubMed ID: 15606799
    [Abstract] [Full Text] [Related]

  • 6. Porin of Shigella dysenteriae directly promotes toll-like receptor 2-mediated CD4+ T cell survival and effector function.
    Biswas A, Banerjee P, Biswas T.
    Mol Immunol; 2009 Sep; 46(15):3076-85. PubMed ID: 19576636
    [Abstract] [Full Text] [Related]

  • 7. Porin of Shigella dysenteriae enhances mRNA levels for Toll-like receptor 2 and MyD88, up-regulates CD80 of murine macrophage, and induces the release of interleukin-12.
    Ray A, Chatterjee NS, Bhattacharya SK, Biswas T.
    FEMS Immunol Med Microbiol; 2003 Dec 05; 39(3):213-9. PubMed ID: 14642305
    [Abstract] [Full Text] [Related]

  • 8. Synergism of toll-like receptor 2 (TLR2), TLR4, and TLR6 ligation on the production of tumor necrosis factor (TNF)-alpha in a spontaneous arthritis animal model of interleukin (IL)-1 receptor antagonist-deficient mice.
    Jung YO, Cho ML, Lee SY, Oh HJ, Park JS, Park MK, Park MJ, Ju JH, Kim SI, Park SH, Kim HY, Min JK.
    Immunol Lett; 2009 Apr 27; 123(2):138-43. PubMed ID: 19428561
    [Abstract] [Full Text] [Related]

  • 9. Concanavalin A induced expression of Toll-like receptors in murine peritoneal macrophages in vitro.
    Sodhi A, Tarang S, Kesherwani V.
    Int Immunopharmacol; 2007 Apr 27; 7(4):454-63. PubMed ID: 17321468
    [Abstract] [Full Text] [Related]

  • 10. MyD88 is dispensable for resistance to Paracoccidioides brasiliensis in a murine model of blood-borne disseminated infection.
    González A, Yáñez A, Gozalbo D, Gil ML.
    FEMS Immunol Med Microbiol; 2008 Dec 27; 54(3):365-74. PubMed ID: 19049649
    [Abstract] [Full Text] [Related]

  • 11. Melanoma inhibits macrophage activation by suppressing toll-like receptor 4 signaling.
    Clarke JH, Cha JY, Walsh MD, Gamboni-Robertson F, Banerjee A, Reznikov LL, Dinarello CA, Harken AH, McCarter MD.
    J Am Coll Surg; 2005 Sep 27; 201(3):418-25. PubMed ID: 16125076
    [Abstract] [Full Text] [Related]

  • 12. Glycosaminoglycans reduced inflammatory response by modulating toll-like receptor-4 in LPS-stimulated chondrocytes.
    Campo GM, Avenoso A, Campo S, Traina P, D'Ascola A, Calatroni A.
    Arch Biochem Biophys; 2009 Nov 27; 491(1-2):7-15. PubMed ID: 19800307
    [Abstract] [Full Text] [Related]

  • 13. Type 1 cytokine/chemokine production by mouse NK cells following activation of their TLR/MyD88-mediated pathways.
    Sawaki J, Tsutsui H, Hayashi N, Yasuda K, Akira S, Tanizawa T, Nakanishi K.
    Int Immunol; 2007 Mar 27; 19(3):311-20. PubMed ID: 17289654
    [Abstract] [Full Text] [Related]

  • 14. Methods of in vitro macrophage maturation confer variable inflammatory responses in association with altered expression of cell surface dectin-1.
    Gersuk GM, Razai LW, Marr KA.
    J Immunol Methods; 2008 Jan 01; 329(1-2):157-66. PubMed ID: 17997408
    [Abstract] [Full Text] [Related]

  • 15. Priming of CD4+ T cells with porin of Shigella dysenteriae activates the cells toward type 1 polarization.
    Biswas A, Banerjee P, Biswas T.
    Int Immunol; 2008 Jan 01; 20(1):81-8. PubMed ID: 18003602
    [Abstract] [Full Text] [Related]

  • 16. Toll-like receptor cross-hyporesponsiveness is functional in interleukin-1-receptor-associated kinase-1 (IRAK-1)-deficient macrophages: differential role played by IRAK-1 in regulation of tumour necrosis factor and interleukin-10 production.
    Berglund M, Thomas JA, Hörnquist EH, Hultgren OH.
    Scand J Immunol; 2008 May 01; 67(5):473-9. PubMed ID: 18405325
    [Abstract] [Full Text] [Related]

  • 17. MyD88-dependent pathway accelerates the liver damage of Concanavalin A-induced hepatitis.
    Ojiro K, Ebinuma H, Nakamoto N, Wakabayashi K, Mikami Y, Ono Y, Po-Sung C, Usui S, Umeda R, Takaishi H, Yamagishi Y, Saito H, Kanai T, Hibi T.
    Biochem Biophys Res Commun; 2010 Sep 03; 399(4):744-9. PubMed ID: 20696131
    [Abstract] [Full Text] [Related]

  • 18. Glycopeptidolipids from Mycobacterium avium promote macrophage activation in a TLR2- and MyD88-dependent manner.
    Sweet L, Schorey JS.
    J Leukoc Biol; 2006 Aug 03; 80(2):415-23. PubMed ID: 16760377
    [Abstract] [Full Text] [Related]

  • 19. Effects of ketamine on levels of cytokines, NF-kappaB and TLRs in rat intestine during CLP-induced sepsis.
    Yu M, Shao D, Liu J, Zhu J, Zhang Z, Xu J.
    Int Immunopharmacol; 2007 Aug 03; 7(8):1076-82. PubMed ID: 17570324
    [Abstract] [Full Text] [Related]

  • 20. Toll-like receptor 6 senses Mycobacterium avium and is required for efficient control of mycobacterial infection.
    Marinho FA, de Paula RR, Mendes AC, de Almeida LA, Gomes MT, Carvalho NB, Oliveira FS, Caliari MV, Oliveira SC.
    Eur J Immunol; 2013 Sep 03; 43(9):2373-85. PubMed ID: 23716075
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.