These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
637 related items for PubMed ID: 16753178
1. Structural basis of the water-assisted asparagine recognition by asparaginyl-tRNA synthetase. Iwasaki W, Sekine S, Kuroishi C, Kuramitsu S, Shirouzu M, Yokoyama S. J Mol Biol; 2006 Jul 07; 360(2):329-42. PubMed ID: 16753178 [Abstract] [Full Text] [Related]
2. Specific amino acid recognition by aspartyl-tRNA synthetase studied by free energy simulations. Archontis G, Simonson T, Moras D, Karplus M. J Mol Biol; 1998 Feb 06; 275(5):823-46. PubMed ID: 9480772 [Abstract] [Full Text] [Related]
3. Binding free energies and free energy components from molecular dynamics and Poisson-Boltzmann calculations. Application to amino acid recognition by aspartyl-tRNA synthetase. Archontis G, Simonson T, Karplus M. J Mol Biol; 2001 Feb 16; 306(2):307-27. PubMed ID: 11237602 [Abstract] [Full Text] [Related]
5. Structure of the nondiscriminating aspartyl-tRNA synthetase from the crenarchaeon Sulfolobus tokodaii strain 7 reveals the recognition mechanism for two different tRNA anticodons. Sato Y, Maeda Y, Shimizu S, Hossain MT, Ubukata S, Suzuki K, Sekiguchi T, Takénaka A. Acta Crystallogr D Biol Crystallogr; 2007 Oct 16; 63(Pt 10):1042-7. PubMed ID: 17881821 [Abstract] [Full Text] [Related]
6. Two residues in the anticodon recognition domain of the aspartyl-tRNA synthetase from Pseudomonas aeruginosa are individually implicated in the recognition of tRNAAsn. Bernard D, Akochy PM, Beaulieu D, Lapointe J, Roy PH. J Bacteriol; 2006 Jan 16; 188(1):269-74. PubMed ID: 16352843 [Abstract] [Full Text] [Related]
7. Expanding tRNA recognition of a tRNA synthetase by a single amino acid change. Feng L, Tumbula-Hansen D, Toogood H, Soll D. Proc Natl Acad Sci U S A; 2003 May 13; 100(10):5676-81. PubMed ID: 12730374 [Abstract] [Full Text] [Related]
8. The crystal structure of asparaginyl-tRNA synthetase from Thermus thermophilus and its complexes with ATP and asparaginyl-adenylate: the mechanism of discrimination between asparagine and aspartic acid. Berthet-Colominas C, Seignovert L, Härtlein M, Grotli M, Cusack S, Leberman R. EMBO J; 1998 May 15; 17(10):2947-60. PubMed ID: 9582288 [Abstract] [Full Text] [Related]
9. A hybrid structural model of the complete Brugia malayi cytoplasmic asparaginyl-tRNA synthetase. Crepin T, Peterson F, Haertlein M, Jensen D, Wang C, Cusack S, Kron M. J Mol Biol; 2011 Jan 28; 405(4):1056-69. PubMed ID: 21134380 [Abstract] [Full Text] [Related]
10. Crystal structure of glutamyl-queuosine tRNAAsp synthetase complexed with L-glutamate: structural elements mediating tRNA-independent activation of glutamate and glutamylation of tRNAAsp anticodon. Blaise M, Olieric V, Sauter C, Lorber B, Roy B, Karmakar S, Banerjee R, Becker HD, Kern D. J Mol Biol; 2008 Sep 19; 381(5):1224-37. PubMed ID: 18602926 [Abstract] [Full Text] [Related]
11. Glycyl-tRNA synthetase uses a negatively charged pit for specific recognition and activation of glycine. Arnez JG, Dock-Bregeon AC, Moras D. J Mol Biol; 1999 Mar 12; 286(5):1449-59. PubMed ID: 10064708 [Abstract] [Full Text] [Related]
12. Computational protein design with a generalized Born solvent model: application to Asparaginyl-tRNA synthetase. Polydorides S, Amara N, Aubard C, Plateau P, Simonson T, Archontis G. Proteins; 2011 Dec 12; 79(12):3448-68. PubMed ID: 21563215 [Abstract] [Full Text] [Related]
13. Synthesis and recognition of aspartyl-adenylate by Thermus thermophilus aspartyl-tRNA synthetase. Poterszman A, Delarue M, Thierry JC, Moras D. J Mol Biol; 1994 Nov 25; 244(2):158-67. PubMed ID: 7966328 [Abstract] [Full Text] [Related]
14. Modeling of tRNA-assisted mechanism of Arg activation based on a structure of Arg-tRNA synthetase, tRNA, and an ATP analog (ANP). Konno M, Sumida T, Uchikawa E, Mori Y, Yanagisawa T, Sekine S, Yokoyama S. FEBS J; 2009 Sep 25; 276(17):4763-79. PubMed ID: 19656186 [Abstract] [Full Text] [Related]
15. The free yeast aspartyl-tRNA synthetase differs from the tRNA(Asp)-complexed enzyme by structural changes in the catalytic site, hinge region, and anticodon-binding domain. Sauter C, Lorber B, Cavarelli J, Moras D, Giegé R. J Mol Biol; 2000 Jun 23; 299(5):1313-24. PubMed ID: 10873455 [Abstract] [Full Text] [Related]
16. Relaxed tRNA specificity of the Staphylococcus aureus aspartyl-tRNA synthetase enables RNA-dependent asparagine biosynthesis. Mladenova SR, Stein KR, Bartlett L, Sheppard K. FEBS Lett; 2014 May 02; 588(9):1808-12. PubMed ID: 24685427 [Abstract] [Full Text] [Related]
17. A succession of substrate induced conformational changes ensures the amino acid specificity of Thermus thermophilus prolyl-tRNA synthetase: comparison with histidyl-tRNA synthetase. Yaremchuk A, Tukalo M, Grøtli M, Cusack S. J Mol Biol; 2001 Jun 15; 309(4):989-1002. PubMed ID: 11399074 [Abstract] [Full Text] [Related]
18. Anticodon-binding domain swapping in a nondiscriminating aspartyl-tRNA synthetase reveals contributions to tRNA specificity and catalytic activity. Chuawong P, Likittrakulwong W, Suebka S, Wiriyatanakorn N, Saparpakorn P, Taweesablamlert A, Sudprasert W, Hendrickson T, Svasti J. Proteins; 2020 Sep 15; 88(9):1133-1142. PubMed ID: 32067260 [Abstract] [Full Text] [Related]
19. Crystal structures of phenylalanyl-tRNA synthetase complexed with phenylalanine and a phenylalanyl-adenylate analogue. Reshetnikova L, Moor N, Lavrik O, Vassylyev DG. J Mol Biol; 1999 Apr 02; 287(3):555-68. PubMed ID: 10092459 [Abstract] [Full Text] [Related]
20. An intermediate step in the recognition of tRNA(Asp) by aspartyl-tRNA synthetase. Briand C, Poterszman A, Eiler S, Webster G, Thierry J, Moras D. J Mol Biol; 2000 Jun 16; 299(4):1051-60. PubMed ID: 10843857 [Abstract] [Full Text] [Related] Page: [Next] [New Search]