These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


117 related items for PubMed ID: 16763145

  • 1. Regenerative adsorption and removal of H2S from hot fuel gas streams by rare earth oxides.
    Flytzani-Stephanopoulos M, Sakbodin M, Wang Z.
    Science; 2006 Jun 09; 312(5779):1508-10. PubMed ID: 16763145
    [Abstract] [Full Text] [Related]

  • 2. Catalysis in high-temperature fuel cells.
    Föger K, Ahmed K.
    J Phys Chem B; 2005 Feb 17; 109(6):2149-54. PubMed ID: 16851206
    [Abstract] [Full Text] [Related]

  • 3. High temperature removal of hydrogen sulfide using an N-150 sorbent.
    Ko TH, Chu H, Chaung LK, Tseng TK.
    J Hazard Mater; 2004 Oct 18; 114(1-3):145-52. PubMed ID: 15511585
    [Abstract] [Full Text] [Related]

  • 4. Regenerable Fe-Mn-ZnO/SiO2 sorbents for room temperature removal of H2S from fuel reformates: performance, active sites, Operando studies.
    Dhage P, Samokhvalov A, Repala D, Duin EC, Tatarchuk BJ.
    Phys Chem Chem Phys; 2011 Feb 14; 13(6):2179-87. PubMed ID: 21132188
    [Abstract] [Full Text] [Related]

  • 5. Formation of (FexMn(2-x))O3 solid solution and high sulfur capacity properties of Mn-based/M41 sorbents for hot coal gas desulfurization.
    Zhang Y, Liu BS, Zhang FM, Zhang ZF.
    J Hazard Mater; 2013 Mar 15; 248-249():81-8. PubMed ID: 23337625
    [Abstract] [Full Text] [Related]

  • 6. A study of Zn-Mn based sorbent for the high-temperature removal of H2S from coal-derived gas.
    Ko TH, Chu H, Liou YJ.
    J Hazard Mater; 2007 Aug 17; 147(1-2):334-41. PubMed ID: 17293040
    [Abstract] [Full Text] [Related]

  • 7. Design of a sorbent to enhance reactive adsorption of hydrogen sulfide.
    Wang LJ, Fan HL, Shangguan J, Croiset E, Chen Z, Wang H, Mi J.
    ACS Appl Mater Interfaces; 2014 Dec 10; 6(23):21167-77. PubMed ID: 25382853
    [Abstract] [Full Text] [Related]

  • 8. (18)O(2) label mechanism of sulfur generation and characterization in properties over mesoporous Sm-based sorbents for hot coal gas desulfurization.
    Liu BS, Wan ZY, Wang F, Zhan YP, Tian M, Cheung AS.
    J Hazard Mater; 2014 Feb 28; 267():229-37. PubMed ID: 24462892
    [Abstract] [Full Text] [Related]

  • 9. Desulfurization of liquid fuels by adsorption on carbon-based sorbents and ultrasound-assisted sorbent regeneration.
    Wang Y, Yang RT.
    Langmuir; 2007 Mar 27; 23(7):3825-31. PubMed ID: 17315903
    [Abstract] [Full Text] [Related]

  • 10. EXAFS and XRD characterization of palladium sorbents for high temperature mercury capture from fuel gas.
    Poulston S, Hyde TI, Hamilton H, Mathon O, Prestipino C, Sankar G, Smith AW.
    Phys Chem Chem Phys; 2010 Jan 14; 12(2):484-91. PubMed ID: 20023826
    [Abstract] [Full Text] [Related]

  • 11. Interaction of water with titania: implications for high-temperature gas sensing.
    Trimboli J, Mottern M, Verweij H, Dutta PK.
    J Phys Chem B; 2006 Mar 23; 110(11):5647-54. PubMed ID: 16539509
    [Abstract] [Full Text] [Related]

  • 12. Red soil as a regenerable sorbent for high temperature removal of hydrogen sulfide from coal gas.
    Ko TH, Chu H, Lin HP, Peng CY.
    J Hazard Mater; 2006 Aug 25; 136(3):776-83. PubMed ID: 16469434
    [Abstract] [Full Text] [Related]

  • 13. Effects of water vapor pretreatment time and reaction temperature on CO(2) capture characteristics of a sodium-based solid sorbent in a bubbling fluidized-bed reactor.
    Seo Y, Jo SH, Ryu CK, Yi CK.
    Chemosphere; 2007 Oct 25; 69(5):712-8. PubMed ID: 17604081
    [Abstract] [Full Text] [Related]

  • 14. Selection of metal oxides in the preparation of rice husk ash (RHA)/CaO sorbent for simultaneous SO2 and NO removal.
    Dahlan I, Lee KT, Kamaruddin AH, Mohamed AR.
    J Hazard Mater; 2009 Jul 30; 166(2-3):1556-9. PubMed ID: 19147280
    [Abstract] [Full Text] [Related]

  • 15. Enabling cleaner fuels: desulfurization by adsorption to microporous coordination polymers.
    Cychosz KA, Wong-Foy AG, Matzger AJ.
    J Am Chem Soc; 2009 Oct 14; 131(40):14538-43. PubMed ID: 19757809
    [Abstract] [Full Text] [Related]

  • 16. Surface studies of gas sensing metal oxides.
    Batzill M, Diebold U.
    Phys Chem Chem Phys; 2007 May 21; 9(19):2307-18. PubMed ID: 17492094
    [Abstract] [Full Text] [Related]

  • 17. Characterization of active sites, determination of mechanisms of H(2)S, COS and CS(2) sorption and regeneration of ZnO low-temperature sorbents: past, current and perspectives.
    Samokhvalov A, Tatarchuk BJ.
    Phys Chem Chem Phys; 2011 Feb 28; 13(8):3197-209. PubMed ID: 21253637
    [Abstract] [Full Text] [Related]

  • 18. Double perovskites as anode materials for solid-oxide fuel cells.
    Huang YH, Dass RI, Xing ZL, Goodenough JB.
    Science; 2006 Apr 14; 312(5771):254-7. PubMed ID: 16614219
    [Abstract] [Full Text] [Related]

  • 19. Hydrocarbon fuel effects in solid-oxide fuel cell operation: an experimental and modeling study of n-hexane pyrolysis.
    Randolph KL, Dean AM.
    Phys Chem Chem Phys; 2007 Aug 21; 9(31):4245-58. PubMed ID: 17687473
    [Abstract] [Full Text] [Related]

  • 20. Monitoring solid oxide CO2 capture sorbents in action.
    Keturakis CJ, Ni F, Spicer M, Beaver MG, Caram HS, Wachs IE.
    ChemSusChem; 2014 Dec 21; 7(12):3459-66. PubMed ID: 25333791
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.