These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
209 related items for PubMed ID: 16765438
1. Measurement of sub-membrane [Ca2+] in adult myofibers and cytosolic [Ca2+] in myotubes from normal and mdx mice using the Ca2+ indicator FFP-18. Han R, Grounds MD, Bakker AJ. Cell Calcium; 2006 Sep; 40(3):299-307. PubMed ID: 16765438 [Abstract] [Full Text] [Related]
3. Lipofection of a cDNA plasmid containing the dystrophin gene lowers intracellular free calcium and calcium leak channel activity in mdx myotubes. McCarter GC, Denetclaw WF, Reddy P, Steinhardt RA. Gene Ther; 1997 May; 4(5):483-7. PubMed ID: 9274726 [Abstract] [Full Text] [Related]
4. Calpain translocation during muscle fiber necrosis and regeneration in dystrophin-deficient mice. Spencer MJ, Tidball JG. Exp Cell Res; 1996 Aug 01; 226(2):264-72. PubMed ID: 8806430 [Abstract] [Full Text] [Related]
5. Ca(2+) influx and opening of Ca(2+)-activated K(+) channels in muscle fibers from control and mdx mice. Mallouk N, Allard B. Biophys J; 2002 Jun 01; 82(6):3012-21. PubMed ID: 12023224 [Abstract] [Full Text] [Related]
6. Mechanosensitive ion channels in skeletal muscle: a link in the membrane pathology of muscular dystrophy. Lansman JB, Franco-Obregón A. Clin Exp Pharmacol Physiol; 2006 Jul 01; 33(7):649-56. PubMed ID: 16789935 [Abstract] [Full Text] [Related]
7. Improvement of calcium handling and changes in calcium-release properties after mini- or full-length dystrophin forced expression in cultured skeletal myotubes. Marchand E, Constantin B, Balghi H, Claudepierre MC, Cantereau A, Magaud C, Mouzou A, Raymond G, Braun S, Cognard C. Exp Cell Res; 2004 Jul 15; 297(2):363-79. PubMed ID: 15212940 [Abstract] [Full Text] [Related]
9. Effect of cyclopiazonic acid, an inhibitor of the sarcoplasmic reticulum Ca-ATPase, on skeletal muscles from normal and mdx mice. Divet A, Lompré AM, Huchet-Cadiou C. Acta Physiol Scand; 2005 Jul 15; 184(3):173-86. PubMed ID: 15954985 [Abstract] [Full Text] [Related]
10. Stimulation of calcineurin signaling attenuates the dystrophic pathology in mdx mice. Chakkalakal JV, Harrison MA, Carbonetto S, Chin E, Michel RN, Jasmin BJ. Hum Mol Genet; 2004 Feb 15; 13(4):379-88. PubMed ID: 14681302 [Abstract] [Full Text] [Related]
13. Long-term study of Ca(2+) homeostasis and of survival in collagenase-isolated muscle fibres from normal and mdx mice. De Backer F, Vandebrouck C, Gailly P, Gillis JM. J Physiol; 2002 Aug 01; 542(Pt 3):855-65. PubMed ID: 12154184 [Abstract] [Full Text] [Related]
15. Ca2+ levels in myotubes grown from the skeletal muscle of dystrophic (mdx) and normal mice. Bakker AJ, Head SI, Williams DA, Stephenson DG. J Physiol; 1993 Jan 01; 460():1-13. PubMed ID: 8487190 [Abstract] [Full Text] [Related]
18. Drastic reduction of sarcalumenin in Dp427 (dystrophin of 427 kDa)-deficient fibres indicates that abnormal calcium handling plays a key role in muscular dystrophy. Dowling P, Doran P, Ohlendieck K. Biochem J; 2004 Apr 15; 379(Pt 2):479-88. PubMed ID: 14678011 [Abstract] [Full Text] [Related]
19. Transient receptor potential cation channels in normal and dystrophic mdx muscle. Krüger J, Kunert-Keil C, Bisping F, Brinkmeier H. Neuromuscul Disord; 2008 Jun 15; 18(6):501-13. PubMed ID: 18504127 [Abstract] [Full Text] [Related]
20. Dystrophic cardiomyopathy: amplification of cellular damage by Ca2+ signalling and reactive oxygen species-generating pathways. Jung C, Martins AS, Niggli E, Shirokova N. Cardiovasc Res; 2008 Mar 01; 77(4):766-73. PubMed ID: 18056762 [Abstract] [Full Text] [Related] Page: [Next] [New Search]