These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


209 related items for PubMed ID: 16765438

  • 21.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 22.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 23. Sarcoplasmic reticulum Ca2+ permeation explored from the lumen side in mdx muscle fibers under voltage control.
    Robin G, Berthier C, Allard B.
    J Gen Physiol; 2012 Mar; 139(3):209-18. PubMed ID: 22371362
    [Abstract] [Full Text] [Related]

  • 24. A critical evaluation of resting intracellular free calcium regulation in dystrophic mdx muscle.
    Hopf FW, Turner PR, Denetclaw WF, Reddy P, Steinhardt RA.
    Am J Physiol; 1996 Oct; 271(4 Pt 1):C1325-39. PubMed ID: 8897840
    [Abstract] [Full Text] [Related]

  • 25.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 26. Streptomycin reduces stretch-induced membrane permeability in muscles from mdx mice.
    Whitehead NP, Streamer M, Lusambili LI, Sachs F, Allen DG.
    Neuromuscul Disord; 2006 Dec; 16(12):845-54. PubMed ID: 17005404
    [Abstract] [Full Text] [Related]

  • 27. Differential calcineurin signalling activity and regeneration efficacy in diaphragm and limb muscles of dystrophic mdx mice.
    Stupka N, Michell BJ, Kemp BE, Lynch GS.
    Neuromuscul Disord; 2006 May; 16(5):337-46. PubMed ID: 16621557
    [Abstract] [Full Text] [Related]

  • 28. Dominant-negative inhibition of Ca2+ influx via TRPV2 ameliorates muscular dystrophy in animal models.
    Iwata Y, Katanosaka Y, Arai Y, Shigekawa M, Wakabayashi S.
    Hum Mol Genet; 2009 Mar 01; 18(5):824-34. PubMed ID: 19050039
    [Abstract] [Full Text] [Related]

  • 29. Poloxamer 188 failed to prevent exercise-induced membrane breakdown in mdx skeletal muscle fibers.
    Quinlan JG, Wong BL, Niemeier RT, McCullough AS, Levin L, Emanuele M.
    Neuromuscul Disord; 2006 Dec 01; 16(12):855-64. PubMed ID: 17118658
    [Abstract] [Full Text] [Related]

  • 30.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 31.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 32.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 33. Increased resting intracellular calcium modulates NF-κB-dependent inducible nitric-oxide synthase gene expression in dystrophic mdx skeletal myotubes.
    Altamirano F, López JR, Henríquez C, Molinski T, Allen PD, Jaimovich E.
    J Biol Chem; 2012 Jun 15; 287(25):20876-87. PubMed ID: 22549782
    [Abstract] [Full Text] [Related]

  • 34.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 35. Calcium entry through stretch-inactivated ion channels in mdx myotubes.
    Franco A, Lansman JB.
    Nature; 1990 Apr 12; 344(6267):670-3. PubMed ID: 1691450
    [Abstract] [Full Text] [Related]

  • 36. Heterokaryon myotubes with normal mouse and Duchenne nuclei exhibit sarcolemmal dystrophin staining and efficient intracellular free calcium control.
    Denetclaw WF, Bi G, Pham DV, Steinhardt RA.
    Mol Biol Cell; 1993 Sep 12; 4(9):963-72. PubMed ID: 8257798
    [Abstract] [Full Text] [Related]

  • 37. The action potential-evoked sarcoplasmic reticulum calcium release is impaired in mdx mouse muscle fibres.
    Woods CE, Novo D, DiFranco M, Vergara JL.
    J Physiol; 2004 May 15; 557(Pt 1):59-75. PubMed ID: 15004213
    [Abstract] [Full Text] [Related]

  • 38.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 39.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 40. Nerve terminal contributes to acetylcholine receptor organization at the dystrophic neuromuscular junction of mdx mice.
    Marques MJ, Taniguti AP, Minatel E, Neto HS.
    Anat Rec (Hoboken); 2007 Feb 15; 290(2):181-7. PubMed ID: 17441210
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 11.