These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


227 related items for PubMed ID: 16765965

  • 1. Effects of EMG processing on biomechanical models of muscle joint systems: sensitivity of trunk muscle moments, spinal forces, and stability.
    Staudenmann D, Potvin JR, Kingma I, Stegeman DF, van Dieën JH.
    J Biomech; 2007; 40(4):900-9. PubMed ID: 16765965
    [Abstract] [Full Text] [Related]

  • 2. Comparison of trunk muscle forces and spinal loads estimated by two biomechanical models.
    Arjmand N, Gagnon D, Plamondon A, Shirazi-Adl A, Larivière C.
    Clin Biomech (Bristol); 2009 Aug; 24(7):533-41. PubMed ID: 19493597
    [Abstract] [Full Text] [Related]

  • 3. Less is more: high pass filtering, to remove up to 99% of the surface EMG signal power, improves EMG-based biceps brachii muscle force estimates.
    Potvin JR, Brown SH.
    J Electromyogr Kinesiol; 2004 Jun; 14(3):389-99. PubMed ID: 15094152
    [Abstract] [Full Text] [Related]

  • 4. High-pass filtering surface EMG in an attempt to better represent the signals detected at the intramuscular level.
    Brown SH, Brookham RL, Dickerson CR.
    Muscle Nerve; 2010 Feb; 41(2):234-9. PubMed ID: 19722252
    [Abstract] [Full Text] [Related]

  • 5. Trunk muscle activation and associated lumbar spine joint shear forces under different levels of external forward force applied to the trunk.
    Kingma I, Staudenmann D, van Dieën JH.
    J Electromyogr Kinesiol; 2007 Feb; 17(1):14-24. PubMed ID: 16531071
    [Abstract] [Full Text] [Related]

  • 6. Methodological aspects of SEMG recordings for force estimation--a tutorial and review.
    Staudenmann D, Roeleveld K, Stegeman DF, van Dieën JH.
    J Electromyogr Kinesiol; 2010 Jun; 20(3):375-87. PubMed ID: 19758823
    [Abstract] [Full Text] [Related]

  • 7. An EMG-to-force processing approach for determining ankle muscle forces during normal human gait.
    Bogey RA, Perry J, Gitter AJ.
    IEEE Trans Neural Syst Rehabil Eng; 2005 Sep; 13(3):302-10. PubMed ID: 16200754
    [Abstract] [Full Text] [Related]

  • 8. Co-activation alters the linear versus non-linear impression of the EMG-torque relationship of trunk muscles.
    Brown SH, McGill SM.
    J Biomech; 2008 Sep; 41(3):491-7. PubMed ID: 18054943
    [Abstract] [Full Text] [Related]

  • 9. Adaptive whitening in electromyogram amplitude estimation for epoch-based applications.
    Prakash P, Salini CA, Tranquilli JA, Brown DR, Clancy EA.
    IEEE Trans Biomed Eng; 2005 Feb; 52(2):331-4. PubMed ID: 15709671
    [Abstract] [Full Text] [Related]

  • 10. Static optimization of muscle forces during gait in comparison to EMG-to-force processing approach.
    Heintz S, Gutierrez-Farewik EM.
    Gait Posture; 2007 Jul; 26(2):279-88. PubMed ID: 17071088
    [Abstract] [Full Text] [Related]

  • 11. An improved multi-joint EMG-assisted optimization approach to estimate joint and muscle forces in a musculoskeletal model of the lumbar spine.
    Gagnon D, Arjmand N, Plamondon A, Shirazi-Adl A, Larivière C.
    J Biomech; 2011 May 17; 44(8):1521-9. PubMed ID: 21439569
    [Abstract] [Full Text] [Related]

  • 12. Feasibility of using EMG driven neuromusculoskeletal model for prediction of dynamic movement of the elbow.
    Koo TK, Mak AF.
    J Electromyogr Kinesiol; 2005 Feb 17; 15(1):12-26. PubMed ID: 15642650
    [Abstract] [Full Text] [Related]

  • 13. Accuracy of a practicable EMG to force model for knee muscles.
    Doorenbosch CA, Harlaar J.
    Neurosci Lett; 2004 Sep 16; 368(1):78-81. PubMed ID: 15342138
    [Abstract] [Full Text] [Related]

  • 14. A two-step EMG-and-optimization process to estimate muscle force during dynamic movement.
    Amarantini D, Rao G, Berton E.
    J Biomech; 2010 Jun 18; 43(9):1827-30. PubMed ID: 20206935
    [Abstract] [Full Text] [Related]

  • 15. Can standard surface EMG processing parameters be used to estimate motor unit global firing rate?
    Zhou P, Rymer WZ.
    J Neural Eng; 2004 Jun 18; 1(2):99-110. PubMed ID: 15876628
    [Abstract] [Full Text] [Related]

  • 16. A method to combine numerical optimization and EMG data for the estimation of joint moments under dynamic conditions.
    Amarantini D, Martin L.
    J Biomech; 2004 Sep 18; 37(9):1393-404. PubMed ID: 15275847
    [Abstract] [Full Text] [Related]

  • 17. Prediction of joint moments using a neural network model of muscle activations from EMG signals.
    Wang L, Buchanan TS.
    IEEE Trans Neural Syst Rehabil Eng; 2002 Mar 18; 10(1):30-7. PubMed ID: 12173737
    [Abstract] [Full Text] [Related]

  • 18. Towards optimal multi-channel EMG electrode configurations in muscle force estimation: a high density EMG study.
    Staudenmann D, Kingma I, Stegeman DF, van Dieën JH.
    J Electromyogr Kinesiol; 2005 Feb 18; 15(1):1-11. PubMed ID: 15642649
    [Abstract] [Full Text] [Related]

  • 19. Heterogeneity of muscle activation in relation to force direction: a multi-channel surface electromyography study on the triceps surae muscle.
    Staudenmann D, Kingma I, Daffertshofer A, Stegeman DF, van Dieën JH.
    J Electromyogr Kinesiol; 2009 Oct 18; 19(5):882-95. PubMed ID: 18556216
    [Abstract] [Full Text] [Related]

  • 20. Predicting maximum eccentric strength from surface EMG measurements.
    Pain MT, Forrester SE.
    J Biomech; 2009 Aug 07; 42(11):1598-603. PubMed ID: 19464688
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.