These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
615 related items for PubMed ID: 16774419
21. Communications: Comparison of activation barriers for the Johari-Goldstein and alpha relaxations and its implications. Goldstein M. J Chem Phys; 2010 Jan 28; 132(4):041104. PubMed ID: 20113012 [Abstract] [Full Text] [Related]
22. Subtraction of DC conductivity and annealing: approaches to identify Johari-Goldstein relaxation in amorphous trehalose. Bhardwaj SP, Suryanarayanan R. Mol Pharm; 2011 Aug 01; 8(4):1416-22. PubMed ID: 21639143 [Abstract] [Full Text] [Related]
23. Johari-Goldstein Relaxation Far Below T_{g}: Experimental Evidence for the Gardner Transition in Structural Glasses? Geirhos K, Lunkenheimer P, Loidl A. Phys Rev Lett; 2018 Feb 23; 120(8):085705. PubMed ID: 29543001 [Abstract] [Full Text] [Related]
24. Additive property of secondary relaxation processes in di-n-octyl and di-isooctyl phthalates: signature of non-Johari-Goldstein relaxation. Kaminska E, Kaminski K, Paluch M, Ziolo J, Ngai KL. J Chem Phys; 2007 May 07; 126(17):174501. PubMed ID: 17492868 [Abstract] [Full Text] [Related]
25. Molecular motions in amorphous ibuprofen as studied by broadband dielectric spectroscopy. Brás AR, Noronha JP, Antunes AM, Cardoso MM, Schönhals A, Affouard F, Dionísio M, Correia NT. J Phys Chem B; 2008 Sep 04; 112(35):11087-99. PubMed ID: 18686991 [Abstract] [Full Text] [Related]
26. Relaxation dynamics in tert-butylpyridine/tristyrene mixture investigated by broadband dielectric spectroscopy. Kessairi K, Capaccioli S, Prevosto D, Lucchesi M, Rolla P. J Chem Phys; 2007 Nov 07; 127(17):174502. PubMed ID: 17994822 [Abstract] [Full Text] [Related]
27. Identification of dielectric and structural relaxations in glass-forming secondary amides. Wang LM, Richert R. J Chem Phys; 2005 Aug 01; 123(5):054516. PubMed ID: 16108678 [Abstract] [Full Text] [Related]
28. Fundamentals of ionic conductivity relaxation gained from study of procaine hydrochloride and procainamide hydrochloride at ambient and elevated pressure. Wojnarowska Z, Swiety-Pospiech A, Grzybowska K, Hawelek L, Paluch M, Ngai KL. J Chem Phys; 2012 Apr 28; 136(16):164507. PubMed ID: 22559496 [Abstract] [Full Text] [Related]
29. Nonlinear Dielectric Behavior of a Secondary Relaxation: Glassy D-Sorbitol. Samanta S, Richert R. J Phys Chem B; 2015 Jul 23; 119(29):8909-16. PubMed ID: 25105940 [Abstract] [Full Text] [Related]
30. Evolution of excess wing and beta-process in simple glass formers. Gainaru C, Kahlau R, Rössler EA, Böhmer R. J Chem Phys; 2009 Nov 14; 131(18):184510. PubMed ID: 19916615 [Abstract] [Full Text] [Related]
31. Effects of water on the primary and secondary relaxation of xylitol and sorbitol: implication on the origin of the Johari-Goldstein relaxation. Psurek T, Maslanka S, Paluch M, Nozaki R, Ngai KL. Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jul 14; 70(1 Pt 1):011503. PubMed ID: 15324052 [Abstract] [Full Text] [Related]
32. Excess wing in the dielectric loss of glass formers: A johari-goldstein beta relaxation? Schneider U, Brand R, Lunkenheimer P, Loidl A. Phys Rev Lett; 2000 Jun 12; 84(24):5560-3. PubMed ID: 10990994 [Abstract] [Full Text] [Related]
33. Dielectric and mechanical relaxation in isooctylcyanobiphenyl (8*OCB). Pawlus S, Mierzwa M, Paluch M, Rzoska SJ, Roland CM. J Phys Condens Matter; 2010 Jun 16; 22(23):235101. PubMed ID: 21393760 [Abstract] [Full Text] [Related]
34. Coupling of Caged Molecule Dynamics to JG β-Relaxation: I. Capaccioli S, Ngai KL, Thayyil MS, Prevosto D. J Phys Chem B; 2015 Jul 16; 119(28):8800-8. PubMed ID: 26090692 [Abstract] [Full Text] [Related]
35. Determining the structural relaxation times deep in the glassy state of the pharmaceutical Telmisartan. Adrjanowicz K, Paluch M, Ngai KL. J Phys Condens Matter; 2010 Mar 31; 22(12):125902. PubMed ID: 21389498 [Abstract] [Full Text] [Related]
36. Calorimetric and relaxation properties of xylitol-water mixtures. Elamin K, Sjöström J, Jansson H, Swenson J. J Chem Phys; 2012 Mar 14; 136(10):104508. PubMed ID: 22423849 [Abstract] [Full Text] [Related]
37. Secondary relaxation behavior in a strong glass. Hu L, Yue Y. J Phys Chem B; 2008 Jul 31; 112(30):9053-7. PubMed ID: 18605753 [Abstract] [Full Text] [Related]
38. Dielectric secondary relaxations in polypropylene glycols. Grzybowska K, Grzybowski A, Zioło J, Paluch M, Capaccioli S. J Chem Phys; 2006 Jul 28; 125(4):44904. PubMed ID: 16942189 [Abstract] [Full Text] [Related]
39. Two secondary modes in decahydroisoquinoline: which one is the true Johari Goldstein process? Paluch M, Pawlus S, Hensel-Bielowka S, Kaminska E, Prevosto D, Capaccioli S, Rolla PA, Ngai KL. J Chem Phys; 2005 Jun 15; 122(23):234506. PubMed ID: 16008461 [Abstract] [Full Text] [Related]
40. Dielectric relaxation of polychlorinated biphenyl/toluene mixtures: component dynamics. Cangialosi D, Alegría A, Colmenero J. J Chem Phys; 2008 Jun 14; 128(22):224508. PubMed ID: 18554030 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]