These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


127 related items for PubMed ID: 16780876

  • 41. Specificity in transcriptional regulation in the absence of specific DNA binding sites: the case of T7 lysozyme.
    Villemain J, Sousa R.
    J Mol Biol; 1998 Sep 04; 281(5):793-802. PubMed ID: 9719635
    [Abstract] [Full Text] [Related]

  • 42. Structural confirmation of a bent and open model for the initiation complex of T7 RNA polymerase.
    Turingan RS, Liu C, Hawkins ME, Martin CT.
    Biochemistry; 2007 Feb 20; 46(7):1714-23. PubMed ID: 17253774
    [Abstract] [Full Text] [Related]

  • 43.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 44. The low processivity of T7 RNA polymerase over the initially transcribed sequence can limit productive initiation in vivo.
    Lopez PJ, Guillerez J, Sousa R, Dreyfus M.
    J Mol Biol; 1997 May 30; 269(1):41-51. PubMed ID: 9192999
    [Abstract] [Full Text] [Related]

  • 45. Extended upstream A-T sequence increases T7 promoter strength.
    Tang GQ, Bandwar RP, Patel SS.
    J Biol Chem; 2005 Dec 09; 280(49):40707-13. PubMed ID: 16215231
    [Abstract] [Full Text] [Related]

  • 46. The bacterial DNA-binding protein H-NS represses ribosomal RNA transcription by trapping RNA polymerase in the initiation complex.
    Schröder O, Wagner R.
    J Mol Biol; 2000 May 19; 298(5):737-48. PubMed ID: 10801345
    [Abstract] [Full Text] [Related]

  • 47. Major conformational changes during T7RNAP transcription initiation coincide with, and are required for, promoter release.
    Guo Q, Nayak D, Brieba LG, Sousa R.
    J Mol Biol; 2005 Oct 21; 353(2):256-70. PubMed ID: 16169559
    [Abstract] [Full Text] [Related]

  • 48. Transcription initiation in a single-subunit RNA polymerase proceeds through DNA scrunching and rotation of the N-terminal subdomains.
    Tang GQ, Roy R, Ha T, Patel SS.
    Mol Cell; 2008 Jun 06; 30(5):567-77. PubMed ID: 18538655
    [Abstract] [Full Text] [Related]

  • 49. T7 RNA polymerase-induced bending of promoter DNA is coupled to DNA opening.
    Tang GQ, Patel SS.
    Biochemistry; 2006 Apr 18; 45(15):4936-46. PubMed ID: 16605261
    [Abstract] [Full Text] [Related]

  • 50. Unraveling the mysteries of transcription.
    Ellenberger T.
    Nat Struct Biol; 1999 Jun 18; 6(6):497-9. PubMed ID: 10360344
    [No Abstract] [Full Text] [Related]

  • 51. Mechanism for de novo RNA synthesis and initiating nucleotide specificity by t7 RNA polymerase.
    Kennedy WP, Momand JR, Yin YW.
    J Mol Biol; 2007 Jul 06; 370(2):256-68. PubMed ID: 17512007
    [Abstract] [Full Text] [Related]

  • 52. DNA footprints of the two kinetically significant intermediates in formation of an RNA polymerase-promoter open complex: evidence that interactions with start site and downstream DNA induce sequential conformational changes in polymerase and DNA.
    Craig ML, Tsodikov OV, McQuade KL, Schlax PE, Capp MW, Saecker RM, Record MT.
    J Mol Biol; 1998 Nov 06; 283(4):741-56. PubMed ID: 9790837
    [Abstract] [Full Text] [Related]

  • 53. The switch from early to late transcription in phage GA-1: characterization of the regulatory protein p4G.
    Horcajadas JA, Monsalve M, Rojo F, Salas M.
    J Mol Biol; 1999 Jul 30; 290(5):917-28. PubMed ID: 10438592
    [Abstract] [Full Text] [Related]

  • 54. Initial bubble collapse plays a key role in the transition to elongation in T7 RNA polymerase.
    Gong P, Esposito EA, Martin CT.
    J Biol Chem; 2004 Oct 22; 279(43):44277-85. PubMed ID: 15337752
    [Abstract] [Full Text] [Related]

  • 55. The specificity loop of T7 RNA polymerase interacts first with the promoter and then with the elongating transcript, suggesting a mechanism for promoter clearance.
    Temiakov D, Mentesana PE, Ma K, Mustaev A, Borukhov S, McAllister WT.
    Proc Natl Acad Sci U S A; 2000 Dec 19; 97(26):14109-14. PubMed ID: 11095736
    [Abstract] [Full Text] [Related]

  • 56. T7 lysozyme represses T7 RNA polymerase transcription by destabilizing the open complex during initiation.
    Stano NM, Patel SS.
    J Biol Chem; 2004 Apr 16; 279(16):16136-43. PubMed ID: 14764584
    [Abstract] [Full Text] [Related]

  • 57. Binding of the bacteriophage T4 transcriptional activator, MotA, to T4 middle promoter DNA: evidence for both major and minor groove contacts.
    Sharma M, Marshall P, Hinton DM.
    J Mol Biol; 1999 Jul 30; 290(5):905-15. PubMed ID: 10438591
    [Abstract] [Full Text] [Related]

  • 58. Mutations in β' subunit of Escherichia coli RNA polymerase perturb the activator polymerase functional interaction required for promoter clearance.
    Swapna G, Chakraborty A, Kumari V, Sen R, Nagaraja V.
    Mol Microbiol; 2011 Jun 30; 80(5):1169-85. PubMed ID: 21435034
    [Abstract] [Full Text] [Related]

  • 59. Equilibrium and stopped-flow kinetic studies of interaction between T7 RNA polymerase and its promoters measured by protein and 2-aminopurine fluorescence changes.
    Jia Y, Kumar A, Patel SS.
    J Biol Chem; 1996 Nov 29; 271(48):30451-8. PubMed ID: 8940010
    [Abstract] [Full Text] [Related]

  • 60. Kinetic and thermodynamic basis of promoter strength: multiple steps of transcription initiation by T7 RNA polymerase are modulated by the promoter sequence.
    Bandwar RP, Jia Y, Stano NM, Patel SS.
    Biochemistry; 2002 Mar 19; 41(11):3586-95. PubMed ID: 11888274
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 7.