These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


178 related items for PubMed ID: 16781203

  • 1. Middle ear gas loss in inflammatory conditions: the role of mucosa thickness and blood flow.
    Ar A, Herman P, Lecain E, Wassef M, Huy PT, Kania RE.
    Respir Physiol Neurobiol; 2007 Feb 15; 155(2):167-76. PubMed ID: 16781203
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Role of nitrogen in transmucosal gas exchange rate in the rat middle ear.
    Kania RE, Herman P, Tran Ba Huy P, Ar A.
    J Appl Physiol (1985); 2006 Nov 15; 101(5):1281-7. PubMed ID: 16840582
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Transmucosal gas-loss rates in middle ears initially filled with O2 or CO2.
    Kania RE, Vérillaud B, Ars B, Tran Ba Huy P, Herman P, Ar A.
    Hear Res; 2016 Oct 15; 340():107-112. PubMed ID: 27106659
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Nasal prostaglandin challenge increases N2O exchange from blood to middle ear.
    Yuksel S, Doyle WJ, Banks J, Seroky JT, Alper CM.
    Auris Nasus Larynx; 2005 Mar 15; 32(1):29-32. PubMed ID: 15882822
    [Abstract] [Full Text] [Related]

  • 10. Accuracy of CO2 conductance predicted using a morphometric model of the middle ear mucosa.
    Kanick SC, Kasi S, Swarts JD, Banks J, Yuksel S, Doyle WJ.
    Acta Otolaryngol; 2006 Dec 15; 126(12):1252-9. PubMed ID: 17101585
    [Abstract] [Full Text] [Related]

  • 11. PO2 levels in middle ear effusions and middle ear mucosa.
    Takahashi M, Niwa H, Yanagita N.
    Acta Otolaryngol Suppl; 1990 Dec 15; 471():39-42. PubMed ID: 2239244
    [Abstract] [Full Text] [Related]

  • 12. Effects of inflammatory changes in the middle ear mucosa on middle ear total pressure.
    Uchimizu H.
    Acta Otolaryngol; 2007 Oct 15; 127(10):1031-7. PubMed ID: 17851893
    [Abstract] [Full Text] [Related]

  • 13. Inert gas exchange in the middle ear.
    Ranade A, Lambertsen CJ, Noordergraaf A.
    Acta Otolaryngol Suppl; 1980 Oct 15; 371():1-23. PubMed ID: 6272533
    [Abstract] [Full Text] [Related]

  • 14. Pressure changes in the human middle ear without opening the eustachian tube.
    Pau HW, Sievert U, Just T, Sadé J.
    Acta Otolaryngol; 2009 Nov 15; 129(11):1182-6. PubMed ID: 19863308
    [Abstract] [Full Text] [Related]

  • 15. Mucosal expression of ENaC and AQP in experimental otitis media induced by Eustachian tube obstruction.
    Song JJ, Kown SK, Kim EJ, Lee YS, Kim BY, Chae SW.
    Int J Pediatr Otorhinolaryngol; 2009 Nov 15; 73(11):1589-93. PubMed ID: 19732969
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Behaviour of middle ear cleft mucosa during inflammation: histo- morphometric study.
    Matanda R, Van de Heyning P, Bogers J, Ars B.
    Acta Otolaryngol; 2006 Sep 15; 126(9):905-9. PubMed ID: 16864485
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Efficacy of bactericidal/permeability-increasing protein in experimental otitis media with effusion in rats: a new therapy for mucosal infections.
    Nell MJ, Grote JJ.
    J Lab Clin Med; 2001 Apr 15; 137(4):303-9. PubMed ID: 11283526
    [Abstract] [Full Text] [Related]

  • 20. Mucosal surface area determines the middle ear pressure response following establishment of sniff-induced underpressures.
    Doyle WJ.
    Acta Otolaryngol; 1999 Apr 15; 119(6):695-702. PubMed ID: 10587004
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.