These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


460 related items for PubMed ID: 16784458

  • 1. Optimization and computational evaluation of a series of potential active site inhibitors of the V82F/I84V drug-resistant mutant of HIV-1 protease: an application of the relaxed complex method of structure-based drug design.
    Perryman AL, Lin JH, Andrew McCammon J.
    Chem Biol Drug Des; 2006 May; 67(5):336-45. PubMed ID: 16784458
    [Abstract] [Full Text] [Related]

  • 2. A structural and thermodynamic escape mechanism from a drug resistant mutation of the HIV-1 protease.
    Vega S, Kang LW, Velazquez-Campoy A, Kiso Y, Amzel LM, Freire E.
    Proteins; 2004 May 15; 55(3):594-602. PubMed ID: 15103623
    [Abstract] [Full Text] [Related]

  • 3. HIV-1 protease molecular dynamics of a wild-type and of the V82F/I84V mutant: possible contributions to drug resistance and a potential new target site for drugs.
    Perryman AL, Lin JH, McCammon JA.
    Protein Sci; 2004 Apr 15; 13(4):1108-23. PubMed ID: 15044738
    [Abstract] [Full Text] [Related]

  • 4. Restrained molecular dynamics simulations of HIV-1 protease: the first step in validating a new target for drug design.
    Perryman AL, Lin JH, McCammon JA.
    Biopolymers; 2006 Jun 15; 82(3):272-84. PubMed ID: 16508951
    [Abstract] [Full Text] [Related]

  • 5. The binding energetics of first- and second-generation HIV-1 protease inhibitors: implications for drug design.
    Velazquez-Campoy A, Kiso Y, Freire E.
    Arch Biochem Biophys; 2001 Jun 15; 390(2):169-75. PubMed ID: 11396919
    [Abstract] [Full Text] [Related]

  • 6. Molecular dynamics and free energy studies on the wild-type and double mutant HIV-1 protease complexed with amprenavir and two amprenavir-related inhibitors: mechanism for binding and drug resistance.
    Hou T, Yu R.
    J Med Chem; 2007 Mar 22; 50(6):1177-88. PubMed ID: 17300185
    [Abstract] [Full Text] [Related]

  • 7. Counteracting HIV-1 protease drug resistance: structural analysis of mutant proteases complexed with XV638 and SD146, cyclic urea amides with broad specificities.
    Ala PJ, Huston EE, Klabe RM, Jadhav PK, Lam PY, Chang CH.
    Biochemistry; 1998 Oct 27; 37(43):15042-9. PubMed ID: 9790666
    [Abstract] [Full Text] [Related]

  • 8. Comparative studies on inhibitors of HIV protease: a target for drug design.
    Jayaraman S, Shah K.
    In Silico Biol; 2008 Oct 27; 8(5-6):427-47. PubMed ID: 19374129
    [Abstract] [Full Text] [Related]

  • 9. Computational design of novel fullerene analogues as potential HIV-1 PR inhibitors: Analysis of the binding interactions between fullerene inhibitors and HIV-1 PR residues using 3D QSAR, molecular docking and molecular dynamics simulations.
    Durdagi S, Mavromoustakos T, Chronakis N, Papadopoulos MG.
    Bioorg Med Chem; 2008 Dec 01; 16(23):9957-74. PubMed ID: 18996019
    [Abstract] [Full Text] [Related]

  • 10. Molecular dynamics and free energy studies on the wild-type and mutated HIV-1 protease complexed with four approved drugs: mechanism of binding and drug resistance.
    Alcaro S, Artese A, Ceccherini-Silberstein F, Ortuso F, Perno CF, Sing T, Svicher V.
    J Chem Inf Model; 2009 Jul 01; 49(7):1751-61. PubMed ID: 19537723
    [Abstract] [Full Text] [Related]

  • 11. A major role for a set of non-active site mutations in the development of HIV-1 protease drug resistance.
    Muzammil S, Ross P, Freire E.
    Biochemistry; 2003 Jan 28; 42(3):631-8. PubMed ID: 12534275
    [Abstract] [Full Text] [Related]

  • 12. A computational study of the resistance of HIV-1 aspartic protease to the inhibitors ABT-538 and VX-478 and design of new analogues.
    Nair AC, Miertus S, Tossi A, Romeo D.
    Biochem Biophys Res Commun; 1998 Jan 26; 242(3):545-51. PubMed ID: 9464253
    [Abstract] [Full Text] [Related]

  • 13. Structure-activity relationships of novel HIV-1 protease inhibitors containing the 3-amino-2-chlorobenzoyl-allophenylnorstatine structure.
    Mimoto T, Nojima S, Terashima K, Takaku H, Shintani M, Hayashi H.
    Bioorg Med Chem; 2008 Feb 01; 16(3):1299-308. PubMed ID: 17981045
    [Abstract] [Full Text] [Related]

  • 14. Small-sized human immunodeficiency virus type-1 protease inhibitors containing allophenylnorstatine to explore the S2' pocket.
    Hidaka K, Kimura T, Abdel-Rahman HM, Nguyen JT, McDaniel KF, Kohlbrenner WE, Molla A, Adachi M, Tamada T, Kuroki R, Katsuki N, Tanaka Y, Matsumoto H, Wang J, Hayashi Y, Kempf DJ, Kiso Y.
    J Med Chem; 2009 Dec 10; 52(23):7604-17. PubMed ID: 19954246
    [Abstract] [Full Text] [Related]

  • 15. Drug resistance of HIV-1 protease against JE-2147: I47V mutation investigated by molecular dynamics simulation.
    Bandyopadhyay P, Meher BR.
    Chem Biol Drug Des; 2006 Feb 10; 67(2):155-61. PubMed ID: 16492163
    [Abstract] [Full Text] [Related]

  • 16. Some insights into mechanism for binding and drug resistance of wild type and I50V V82A and I84V mutations in HIV-1 protease with GRL-98065 inhibitor from molecular dynamic simulations.
    Hu GD, Zhu T, Zhang SL, Wang D, Zhang QG.
    Eur J Med Chem; 2010 Jan 10; 45(1):227-35. PubMed ID: 19910081
    [Abstract] [Full Text] [Related]

  • 17. Resistance to HIV protease inhibitors: a comparison of enzyme inhibition and antiviral potency.
    Klabe RM, Bacheler LT, Ala PJ, Erickson-Viitanen S, Meek JL.
    Biochemistry; 1998 Jun 16; 37(24):8735-42. PubMed ID: 9628735
    [Abstract] [Full Text] [Related]

  • 18. Prediction of HIV-1 protease inhibitor resistance using a protein-inhibitor flexible docking approach.
    Jenwitheesuk E, Samudrala R.
    Antivir Ther; 2005 Jun 16; 10(1):157-66. PubMed ID: 15751773
    [Abstract] [Full Text] [Related]

  • 19. Multidrug resistance to HIV-1 protease inhibition requires cooperative coupling between distal mutations.
    Ohtaka H, Schön A, Freire E.
    Biochemistry; 2003 Nov 25; 42(46):13659-66. PubMed ID: 14622012
    [Abstract] [Full Text] [Related]

  • 20. Structure-based ligand design by dynamically assembling molecular building blocks at binding site.
    Liu H, Duan Z, Luo Q, Shi Y.
    Proteins; 1999 Sep 01; 36(4):462-70. PubMed ID: 10450088
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 23.