These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


174 related items for PubMed ID: 16786703

  • 21. Tetrachloroethene conversion to ethene by a Dehalococcoides-containing enrichment culture from Bitterfeld.
    Cichocka D, Nikolausz M, Haest PJ, Nijenhuis I.
    FEMS Microbiol Ecol; 2010 May; 72(2):297-310. PubMed ID: 20507364
    [Abstract] [Full Text] [Related]

  • 22. Comparison between donor substrates for biologically enhanced tetrachloroethene DNAPL dissolution.
    Yang Y, McCarty PL.
    Environ Sci Technol; 2002 Aug 01; 36(15):3400-4. PubMed ID: 12188371
    [Abstract] [Full Text] [Related]

  • 23. Reductive dechlorination of tetrachloroethene to trans-dichloroethene and cis-dichloroethene by PCB-dechlorinating bacterium DF-1.
    Miller GS, Milliken CE, Sowers KR, May HD.
    Environ Sci Technol; 2005 Apr 15; 39(8):2631-5. PubMed ID: 15884359
    [Abstract] [Full Text] [Related]

  • 24. Comparative analysis of three tetrachloroethene to ethene halorespiring consortia suggests functional redundancy.
    Daprato RC, Löffler FE, Hughes JB.
    Environ Sci Technol; 2007 Apr 01; 41(7):2261-9. PubMed ID: 17438773
    [Abstract] [Full Text] [Related]

  • 25. Organohalide Respiration with Chlorinated Ethenes under Low pH Conditions.
    Yang Y, Cápiro NL, Marcet TF, Yan J, Pennell KD, Löffler FE.
    Environ Sci Technol; 2017 Aug 01; 51(15):8579-8588. PubMed ID: 28665587
    [Abstract] [Full Text] [Related]

  • 26. Continuous-flow column study of reductive dehalogenation of PCE upon bioaugmentation with the Evanite enrichment culture.
    Azizian MF, Behrens S, Sabalowsky A, Dolan ME, Spormann AM, Semprini L.
    J Contam Hydrol; 2008 Aug 20; 100(1-2):11-21. PubMed ID: 18550206
    [Abstract] [Full Text] [Related]

  • 27. Enhanced reductive dechlorination of PCE DNAPL with TBOS as a slow-release electron donor.
    Yu S, Semprini L.
    J Hazard Mater; 2009 Aug 15; 167(1-3):97-104. PubMed ID: 19179006
    [Abstract] [Full Text] [Related]

  • 28. Detection and quantification of Geobacter lovleyi strain SZ: implications for bioremediation at tetrachloroethene- and uranium-impacted sites.
    Amos BK, Sung Y, Fletcher KE, Gentry TJ, Wu WM, Criddle CS, Zhou J, Löffler FE.
    Appl Environ Microbiol; 2007 Nov 15; 73(21):6898-904. PubMed ID: 17827319
    [Abstract] [Full Text] [Related]

  • 29. Comparative evaluation of chloroethene dechlorination to ethene by Dehalococcoides-like microorganisms.
    Cupples AM, Spormann AM, McCarty PL.
    Environ Sci Technol; 2004 Sep 15; 38(18):4768-74. PubMed ID: 15487786
    [Abstract] [Full Text] [Related]

  • 30. Geochemical reactions resulting from in situ oxidation of PCE-DNAPL by KMnO4 in a sandy aquifer.
    Nelson MD, Parker BL, Al TA, Cherry JA, Loomer D.
    Environ Sci Technol; 2001 Mar 15; 35(6):1266-75. PubMed ID: 11347943
    [Abstract] [Full Text] [Related]

  • 31. Effects of bioaugmentation on enhanced reductive dechlorination of 1,1,1-trichloroethane in groundwater: a comparison of three sites.
    Scheutz C, Durant ND, Broholm MM.
    Biodegradation; 2014 Jun 15; 25(3):459-78. PubMed ID: 24233554
    [Abstract] [Full Text] [Related]

  • 32. Electron donor availability for microbial reductive processes following thermal treatment.
    Fletcher KE, Costanza J, Pennell KD, Löffler FE.
    Water Res; 2011 Dec 15; 45(20):6625-36. PubMed ID: 22048015
    [Abstract] [Full Text] [Related]

  • 33. Multi-method assessment of the intrinsic biodegradation potential of an aquifer contaminated with chlorinated ethenes at an industrial area in Barcelona (Spain).
    Blázquez-Pallí N, Rosell M, Varias J, Bosch M, Soler A, Vicent T, Marco-Urrea E.
    Environ Pollut; 2019 Jan 15; 244():165-173. PubMed ID: 30326388
    [Abstract] [Full Text] [Related]

  • 34. Biostimulation of indigenous communities for the successful dechlorination of tetrachloroethene (perchloroethylene)-contaminated groundwater.
    Patil SS, Adetutu EM, Aburto-Medina A, Menz IR, Ball AS.
    Biotechnol Lett; 2014 Jan 15; 36(1):75-83. PubMed ID: 24101252
    [Abstract] [Full Text] [Related]

  • 35. Stratification of chlorinated ethenes natural attenuation in an alluvial aquifer assessed by hydrochemical and biomolecular tools.
    Němeček J, Dolinová I, Macháčková J, Špánek R, Ševců A, Lederer T, Černík M.
    Chemosphere; 2017 Oct 15; 184():1157-1167. PubMed ID: 28672697
    [Abstract] [Full Text] [Related]

  • 36. Effect of source variability and transport processes on carbon isotope ratios of TCE and PCE in two sandy aquifers.
    Hunkeler D, Chollet N, Pittet X, Aravena R, Cherry JA, Parker BL.
    J Contam Hydrol; 2004 Oct 15; 74(1-4):265-82. PubMed ID: 15358496
    [Abstract] [Full Text] [Related]

  • 37. Benzoate-driven dehalogenation of chlorinated ethenes in microbial cultures from a contaminated aquifer.
    Bunge M, Kleikemper J, Miniaci C, Duc L, Muusse MG, Hause G, Zeyer J.
    Appl Microbiol Biotechnol; 2007 Oct 15; 76(6):1447-56. PubMed ID: 17768618
    [Abstract] [Full Text] [Related]

  • 38. Complete dechlorination of tetrachloroethene to ethene in presence of methanogenesis and acetogenesis by an anaerobic sediment microcosm.
    Aulenta F, Majone M, Verbo P, Tandoi V.
    Biodegradation; 2002 Oct 15; 13(6):411-24. PubMed ID: 12713133
    [Abstract] [Full Text] [Related]

  • 39. Effectiveness of stimulating PCE reductive dechlorination: a step-wise approach.
    Ni Z, Smit M, Grotenhuis T, van Gaans P, Rijnaarts H.
    J Contam Hydrol; 2014 Aug 15; 164():209-18. PubMed ID: 24995946
    [Abstract] [Full Text] [Related]

  • 40. Isolation and quantitative detection of tetrachloroethene (PCE)-dechlorinating bacteria in unsaturated subsurface soils contaminated with chloroethenes.
    Yoshida N, Asahi K, Sakakibara Y, Miyake K, Katayama A.
    J Biosci Bioeng; 2007 Aug 15; 104(2):91-7. PubMed ID: 17884652
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 9.