These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


153 related items for PubMed ID: 16791642

  • 1. Redox properties of the Fe3+/Fe2+ couple in Arthromyces ramosus class II peroxidase and its cyanide adduct.
    Battistuzzi G, Bellei M, De Rienzo F, Sola M.
    J Biol Inorg Chem; 2006 Jul; 11(5):586-92. PubMed ID: 16791642
    [Abstract] [Full Text] [Related]

  • 2. Redox thermodynamics of the Fe(3+)/Fe(2+) couple in horseradish peroxidase and its cyanide complex.
    Battistuzzi G, Borsari M, Ranieri A, Sola M.
    J Am Chem Soc; 2002 Jan 09; 124(1):26-7. PubMed ID: 11772056
    [Abstract] [Full Text] [Related]

  • 3. Structures of cyanide, nitric oxide and hydroxylamine complexes of Arthromyces ramosusperoxidase at 100 K refined to 1.3 A resolution: coordination geometries of the ligands to the haem iron.
    Fukuyama K, Okada T.
    Acta Crystallogr D Biol Crystallogr; 2007 Apr 09; 63(Pt 4):472-7. PubMed ID: 17372351
    [Abstract] [Full Text] [Related]

  • 4. Crystal structure of the fungal peroxidase from Arthromyces ramosus at 1.9 A resolution. Structural comparisons with the lignin and cytochrome c peroxidases.
    Kunishima N, Fukuyama K, Matsubara H, Hatanaka H, Shibano Y, Amachi T.
    J Mol Biol; 1994 Jan 07; 235(1):331-44. PubMed ID: 8289254
    [Abstract] [Full Text] [Related]

  • 5. Crystal structures of cyanide- and triiodide-bound forms of Arthromyces ramosus peroxidase at different pH values. Perturbations of active site residues and their implication in enzyme catalysis.
    Fukuyama K, Kunishima N, Amada F, Kubota T, Matsubara H.
    J Biol Chem; 1995 Sep 15; 270(37):21884-92. PubMed ID: 7665612
    [Abstract] [Full Text] [Related]

  • 6. Pentacoordination of the heme iron of Arthromyces ramosus peroxidase shown by a 1.8 A resolution crystallographic study at pH 4.5.
    Kunishima N, Amada F, Fukuyama K, Kawamoto M, Matsunaga T, Matsubara H.
    FEBS Lett; 1996 Jan 15; 378(3):291-4. PubMed ID: 8557120
    [Abstract] [Full Text] [Related]

  • 7. Axial ligation and polypeptide matrix effects on the reduction potential of heme proteins probed on their cyanide adducts.
    Battistuzzi G, Bellei M, Borsari M, Di Rocco G, Ranieri A, Sola M.
    J Biol Inorg Chem; 2005 Oct 15; 10(6):643-51. PubMed ID: 16133205
    [Abstract] [Full Text] [Related]

  • 8. Luminol activity of horseradish peroxidase mutants mimicking a proposed binding site for luminol in Arthromyces ramosus peroxidase.
    Tanaka M, Ishimori K, Morishima I.
    Biochemistry; 1999 Aug 10; 38(32):10463-73. PubMed ID: 10441142
    [Abstract] [Full Text] [Related]

  • 9. Influence of protein environment on magnetic circular dichroism spectral properties of ferric and ferrous ligand complexes of yeast cytochrome c peroxidase.
    Pond AE, Sono M, Elenkova EA, Goodin DB, English AM, Dawson JH.
    Biospectroscopy; 1999 Aug 10; 5(5 Suppl):S42-52. PubMed ID: 10512537
    [Abstract] [Full Text] [Related]

  • 10. Redox thermodynamics of the Fe(III)/Fe(II) couple of human myeloperoxidase in its high-spin and low-spin forms.
    Battistuzzi G, Bellei M, Zederbauer M, Furtmüller PG, Sola M, Obinger C.
    Biochemistry; 2006 Oct 24; 45(42):12750-5. PubMed ID: 17042493
    [Abstract] [Full Text] [Related]

  • 11. Binding of salicylhydroxamic acid and several aromatic donor molecules to Arthromyces ramosus peroxidase, investigated by X-ray crystallography, optical difference spectroscopy, NMR relaxation, molecular dynamics, and kinetics.
    Tsukamoto K, Itakura H, Sato K, Fukuyama K, Miura S, Takahashi S, Ikezawa H, Hosoya T.
    Biochemistry; 1999 Sep 28; 38(39):12558-68. PubMed ID: 10504224
    [Abstract] [Full Text] [Related]

  • 12. 1H NMR investigation of manganese peroxidase from Phanerochaete chrysosporium. A comparison with other peroxidases.
    Banci L, Bertini I, Pease EA, Tien M, Turano P.
    Biochemistry; 1992 Oct 20; 31(41):10009-17. PubMed ID: 1327129
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Influence of the distal his in imparting imidazolate character to the proximal his in heme peroxidase: (1)h NMR spectroscopic study of cyanide-inhibited his42-->ala horseradish peroxidase.
    de Ropp JS, Sham S, Asokan A, Newmyer S, Ortiz de Montellano PR, La Mar GN.
    J Am Chem Soc; 2002 Sep 18; 124(37):11029-37. PubMed ID: 12224950
    [Abstract] [Full Text] [Related]

  • 15. Redox reactivity of the heme Fe3+/Fe 2+ couple in native myoglobins and mutants with peroxidase-like activity.
    Battistuzzi G, Bellei M, Casella L, Bortolotti CA, Roncone R, Monzani E, Sola M.
    J Biol Inorg Chem; 2007 Sep 18; 12(7):951-8. PubMed ID: 17576605
    [Abstract] [Full Text] [Related]

  • 16. Redox thermodynamics of the ferric-ferrous couple of wild-type synechocystis KatG and KatG(Y249F).
    Bellei M, Jakopitsch C, Battistuzzi G, Sola M, Obinger C.
    Biochemistry; 2006 Apr 18; 45(15):4768-74. PubMed ID: 16605245
    [Abstract] [Full Text] [Related]

  • 17. Direct binding of hydroxylamine to the heme iron of Arthromyces ramosus peroxidase. Substrate analogue that inhibits compound I formation in a competetive manner.
    Wariishi H, Nonaka D, Johjima T, Nakamura N, Naruta Y, Kubo S, Fukuyama K.
    J Biol Chem; 2000 Oct 20; 275(42):32919-24. PubMed ID: 10915789
    [Abstract] [Full Text] [Related]

  • 18. Arthromyces ramosus peroxidase produces two chlorinating species.
    Huang L, Ortiz de Montellano PR.
    Biochem Biophys Res Commun; 2007 Apr 06; 355(2):581-6. PubMed ID: 17303078
    [Abstract] [Full Text] [Related]

  • 19. NMR study of the active site of resting state and cyanide-inhibited lignin peroxidase from Phanerochaete chrysosporium. Comparison with horseradish peroxidase.
    de Ropp JS, La Mar GN, Wariishi H, Gold MH.
    J Biol Chem; 1991 Aug 15; 266(23):15001-8. PubMed ID: 1869537
    [Abstract] [Full Text] [Related]

  • 20. Paramagnetic 13C and 15N NMR analyses of cyanide- (13C15N-) ligated ferric peroxidases: the push effect, not pull effect, modulates the compound I formation rate.
    Nonaka D, Wariishi H, Fujii H.
    Biochemistry; 2009 Feb 10; 48(5):898-905. PubMed ID: 19187033
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.