These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
259 related items for PubMed ID: 16794941
1. A note on the local current associated with the rising phase of a propagating impulse in nonmyelinated nerve fibers. Tasaki I. Bull Math Biol; 2006 Feb; 68(2):483-90. PubMed ID: 16794941 [Abstract] [Full Text] [Related]
2. On the cable theory of nerve conduction. Tasaki I, Matsumoto G. Bull Math Biol; 2002 Nov; 64(6):1069-82. PubMed ID: 12508531 [Abstract] [Full Text] [Related]
3. Conduction failures in rabbit saphenous nerve unmyelinated fibers. Zhu ZR, Tang XW, Wang WT, Ren W, Xing JL, Zhang JR, Duan JH, Wang YY, Jiao X, Hu SJ. Neurosignals; 2009 Nov; 17(3):181-95. PubMed ID: 19295243 [Abstract] [Full Text] [Related]
4. On the conduction velocity of nonmyelinated nerve fibers. Tasaki I. J Integr Neurosci; 2004 Jun; 3(2):115-24. PubMed ID: 15285049 [Abstract] [Full Text] [Related]
5. Activity-dependent modulation of axonal excitability in unmyelinated peripheral rat nerve fibers by the 5-HT(3) serotonin receptor. Lang PM, Moalem-Taylor G, Tracey DJ, Bostock H, Grafe P. J Neurophysiol; 2006 Dec; 96(6):2963-71. PubMed ID: 16956988 [Abstract] [Full Text] [Related]
6. Conduction in bundles of demyelinated nerve fibers: computer simulation. Reutskiy S, Rossoni E, Tirozzi B. Biol Cybern; 2003 Dec; 89(6):439-48. PubMed ID: 14673655 [Abstract] [Full Text] [Related]
7. Generalized cable equation model for myelinated nerve fiber. Einziger PD, Livshitz LM, Mizrahi J. IEEE Trans Biomed Eng; 2005 Oct; 52(10):1632-42. PubMed ID: 16235649 [Abstract] [Full Text] [Related]
8. Spread of discrete structural changes in synthetic polyanionic gel: a model of propagation of a nerve impulse. Tasaki I. J Theor Biol; 2002 Oct 21; 218(4):497-505. PubMed ID: 12384052 [Abstract] [Full Text] [Related]
9. Direct current electrical conduction block of peripheral nerve. Bhadra N, Kilgore KL. IEEE Trans Neural Syst Rehabil Eng; 2004 Sep 21; 12(3):313-24. PubMed ID: 15473193 [Abstract] [Full Text] [Related]
10. Differential contribution of sodium channel subtypes to action potential generation in unmyelinated human C-type nerve fibers. Lang PM, Hilmer VB, Grafe P. Anesthesiology; 2007 Sep 21; 107(3):495-501. PubMed ID: 17721253 [Abstract] [Full Text] [Related]
11. The H-current secures action potential transmission at high frequencies in rat cerebellar parallel fibers. Baginskas A, Palani D, Chiu K, Raastad M. Eur J Neurosci; 2009 Jan 21; 29(1):87-96. PubMed ID: 19087162 [Abstract] [Full Text] [Related]
12. Direct measurement of human sympathetic nerve conduction velocity. Kondo M, Iwase S, Mano T, Kuzuhara S. Muscle Nerve; 2004 Jan 21; 29(1):128-33. PubMed ID: 14694508 [Abstract] [Full Text] [Related]
13. A study of conduction velocity in nonmyelinated nerve fibers. Matsumoto G, Tasaki I. Biophys J; 1977 Oct 21; 20(1):1-13. PubMed ID: 901899 [Abstract] [Full Text] [Related]
14. Metabolic energy cost of action potential velocity. Crotty P, Sangrey T, Levy WB. J Neurophysiol; 2006 Sep 21; 96(3):1237-46. PubMed ID: 16554507 [Abstract] [Full Text] [Related]
15. Internodal myelinated segments: delay and RGC time-domain Green function model. Villapecellín-Cid MM, Medina F, Roa LM. IEEE Trans Biomed Eng; 2004 Feb 21; 51(2):389-91. PubMed ID: 14765713 [Abstract] [Full Text] [Related]
16. [The solving and simulation of cable equation under the stimulation of point electrical source]. Jiang C, Wang H, Wang J, Zhang L. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2005 Feb 21; 22(1):43-6. PubMed ID: 15762112 [Abstract] [Full Text] [Related]
17. Role of TTX-sensitive and TTX-resistant sodium channels in Adelta- and C-fiber conduction and synaptic transmission. Pinto V, Derkach VA, Safronov BV. J Neurophysiol; 2008 Feb 21; 99(2):617-28. PubMed ID: 18057109 [Abstract] [Full Text] [Related]
18. Modulation of action potential trains in rabbit saphenous nerve unmyelinated fibers. Zhu ZR, Liu YH, Ji WG, Duan JH, Hu SJ. Neurosignals; 2013 Feb 21; 21(3-4):213-28. PubMed ID: 22869293 [Abstract] [Full Text] [Related]
19. Effects of high-frequency alternating current on axonal conduction through the vagus nerve. Waataja JJ, Tweden KS, Honda CN. J Neural Eng; 2011 Oct 21; 8(5):056013. PubMed ID: 21918293 [Abstract] [Full Text] [Related]
20. Dipole distance for minimum threshold current to stimulate unmyelinated axons with microelectrodes. Rattay F, Resatz S. IEEE Trans Biomed Eng; 2007 Jan 21; 54(1):158-62. PubMed ID: 17260868 [Abstract] [Full Text] [Related] Page: [Next] [New Search]