These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
219 related items for PubMed ID: 16800623
1. An alternative clamp loading pathway via the T4 clamp loader gp44/62-DNA complex. Zhuang Z, Berdis AJ, Benkovic SJ. Biochemistry; 2006 Jul 04; 45(26):7976-89. PubMed ID: 16800623 [Abstract] [Full Text] [Related]
2. The kinetic mechanism of formation of the bacteriophage T4 DNA polymerase sliding clamp. Young MC, Weitzel SE, von Hippel PH. J Mol Biol; 1996 Dec 06; 264(3):440-52. PubMed ID: 8969296 [Abstract] [Full Text] [Related]
3. Fluorescence monitoring of T4 polymerase holoenzyme accessory protein interactions during loading of the sliding clamp onto the template-primer junction. Latham GJ, Pietroni P, Dong F, Young MC, von Hippel PH. J Mol Biol; 1996 Dec 06; 264(3):426-39. PubMed ID: 8969295 [Abstract] [Full Text] [Related]
4. Dissection of the ATP-driven reaction cycle of the bacteriophage T4 DNA replication processivity clamp loading system. Pietroni P, Young MC, Latham GJ, von Hippel PH. J Mol Biol; 2001 Jun 15; 309(4):869-91. PubMed ID: 11399065 [Abstract] [Full Text] [Related]
5. Dissecting the order of bacteriophage T4 DNA polymerase holoenzyme assembly. Sexton DJ, Kaboord BF, Berdis AJ, Carver TE, Benkovic SJ. Biochemistry; 1998 May 26; 37(21):7749-56. PubMed ID: 9601035 [Abstract] [Full Text] [Related]
6. Role of adenosine 5'-triphosphate hydrolysis in the assembly of the bacteriophage T4 DNA replication holoenzyme complex. Berdis AJ, Benkovic SJ. Biochemistry; 1996 Jul 16; 35(28):9253-65. PubMed ID: 8703931 [Abstract] [Full Text] [Related]
7. Tracking sliding clamp opening and closing during bacteriophage T4 DNA polymerase holoenzyme assembly. Alley SC, Abel-Santos E, Benkovic SJ. Biochemistry; 2000 Mar 21; 39(11):3076-90. PubMed ID: 10715129 [Abstract] [Full Text] [Related]
8. Comparison of the assembly of the bacteriophage T4 clamp loader complex (gp44/62) expressed in a cis versus trans genomic configuration. Janzen DM, Torgov MY, Abbott SN, Reddy MK. Virology; 1999 Jul 20; 260(1):64-73. PubMed ID: 10405357 [Abstract] [Full Text] [Related]
9. Dissociation of bacteriophage T4 DNA polymerase and its processivity clamp after completion of Okazaki fragment synthesis. Carver TE, Sexton DJ, Benkovic SJ. Biochemistry; 1997 Nov 25; 36(47):14409-17. PubMed ID: 9398159 [Abstract] [Full Text] [Related]
10. Creating a dynamic picture of the sliding clamp during T4 DNA polymerase holoenzyme assembly by using fluorescence resonance energy transfer. Trakselis MA, Alley SC, Abel-Santos E, Benkovic SJ. Proc Natl Acad Sci U S A; 2001 Jul 17; 98(15):8368-75. PubMed ID: 11459977 [Abstract] [Full Text] [Related]
11. Mechanism of bacteriophage T4 DNA holoenzyme assembly: the 44/62 protein acts as a molecular motor. Berdis AJ, Benkovic SJ. Biochemistry; 1997 Mar 11; 36(10):2733-43. PubMed ID: 9062100 [Abstract] [Full Text] [Related]
12. How a holoenzyme for DNA replication is formed. Perumal SK, Ren W, Lee TH, Benkovic SJ. Proc Natl Acad Sci U S A; 2013 Jan 02; 110(1):99-104. PubMed ID: 23248268 [Abstract] [Full Text] [Related]
13. Structural analyses of gp45 sliding clamp interactions during assembly of the bacteriophage T4 DNA polymerase holoenzyme. II. The Gp44/62 clamp loader interacts with a single defined face of the sliding clamp ring. Latham GJ, Bacheller DJ, Pietroni P, von Hippel PH. J Biol Chem; 1997 Dec 12; 272(50):31677-84. PubMed ID: 9395509 [Abstract] [Full Text] [Related]
14. Single-molecule investigation of the T4 bacteriophage DNA polymerase holoenzyme: multiple pathways of holoenzyme formation. Smiley RD, Zhuang Z, Benkovic SJ, Hammes GG. Biochemistry; 2006 Jul 04; 45(26):7990-7. PubMed ID: 16800624 [Abstract] [Full Text] [Related]
15. Dynamics of DNA-tracking by two sliding-clamp proteins. Fu TJ, Sanders GM, O'Donnell M, Geiduschek EP. EMBO J; 1996 Aug 15; 15(16):4414-22. PubMed ID: 8861968 [Abstract] [Full Text] [Related]
16. Structural analyses of gp45 sliding clamp interactions during assembly of the bacteriophage T4 DNA polymerase holoenzyme. I. Conformational changes within the gp44/62-gp45-ATP complex during clamp loading. Pietroni P, Young MC, Latham GJ, von Hippel PH. J Biol Chem; 1997 Dec 12; 272(50):31666-76. PubMed ID: 9395508 [Abstract] [Full Text] [Related]
17. Examination of the role of the clamp-loader and ATP hydrolysis in the formation of the bacteriophage T4 polymerase holoenzyme. Trakselis MA, Berdis AJ, Benkovic SJ. J Mol Biol; 2003 Feb 14; 326(2):435-51. PubMed ID: 12559912 [Abstract] [Full Text] [Related]
18. Assembly of a functional replication complex without ATP hydrolysis: a direct interaction of bacteriophage T4 gp45 with T4 DNA polymerase. Reddy MK, Weitzel SE, von Hippel PH. Proc Natl Acad Sci U S A; 1993 Apr 15; 90(8):3211-5. PubMed ID: 8475061 [Abstract] [Full Text] [Related]
19. Stopped-flow fluorescence study of precatalytic primer strand base-unstacking transitions in the exonuclease cleft of bacteriophage T4 DNA polymerase. Otto MR, Bloom LB, Goodman MF, Beechem JM. Biochemistry; 1998 Jul 14; 37(28):10156-63. PubMed ID: 9665721 [Abstract] [Full Text] [Related]
20. Structural analyses of gp45 sliding clamp interactions during assembly of the bacteriophage T4 DNA polymerase holoenzyme. III. The Gp43 DNA polymerase binds to the same face of the sliding clamp as the clamp loader. Latham GJ, Bacheller DJ, Pietroni P, von Hippel PH. J Biol Chem; 1997 Dec 12; 272(50):31685-92. PubMed ID: 9395510 [Abstract] [Full Text] [Related] Page: [Next] [New Search]