These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


96 related items for PubMed ID: 1680315

  • 41. The effect of prenylamine and organic nitrates on the bioenergetics of bovine catecholamine storage vesicles.
    Grønberg M, Terland O, Husebye ES, Flatmark T.
    Biochem Pharmacol; 1990 Jul 15; 40(2):351-5. PubMed ID: 2142883
    [Abstract] [Full Text] [Related]

  • 42. Is the vesicular nucleotide transporter a molecular target of eicosapentaenoic acid?
    Moriyama Y, Hasuzawa N, Nomura M.
    Front Pharmacol; 2022 Jul 15; 13():1080189. PubMed ID: 36569286
    [Abstract] [Full Text] [Related]

  • 43. Demonstration of a receptor in Torpedo synaptic vesicles for the acetylcholine storage blocker L-trans-2-(4-phenyl[3,4-3H]-piperidino) cyclohexanol.
    Bahr BA, Parsons SM.
    Proc Natl Acad Sci U S A; 1986 Apr 15; 83(7):2267-70. PubMed ID: 3457385
    [Abstract] [Full Text] [Related]

  • 44. Proton electrochemical gradient: Driving and regulating neurotransmitter uptake.
    Farsi Z, Jahn R, Woehler A.
    Bioessays; 2017 May 15; 39(5):. PubMed ID: 28383767
    [Abstract] [Full Text] [Related]

  • 45. Characterization of the solubilized and reconstituted ATP-dependent vesicular glutamate uptake system.
    Carlson MD, Kish PE, Ueda T.
    J Biol Chem; 1989 May 05; 264(13):7369-76. PubMed ID: 2523394
    [Abstract] [Full Text] [Related]

  • 46. ATP-dependent transport of reduced glutathione in yeast secretory vesicles.
    Rebbeor JF, Connolly GC, Dumont ME, Ballatori N.
    Biochem J; 1998 Sep 15; 334 ( Pt 3)(Pt 3):723-9. PubMed ID: 9729482
    [Abstract] [Full Text] [Related]

  • 47. Phenylarsine oxide is able to dissipate synaptic vesicle acidic pool.
    Tarasenko AS, Kostrzhevska OG, Storchak LG, Linetska MV, Borisova TA, Himmelreich NH.
    Neurochem Int; 2005 Jun 15; 46(7):541-50. PubMed ID: 15843048
    [Abstract] [Full Text] [Related]

  • 48. Biochemical evidence that acetylcholine release from cholinergic nerve terminals is mostly vesicular.
    Michaelson DM, Burstein M.
    FEBS Lett; 1985 Sep 02; 188(2):389-93. PubMed ID: 4029394
    [Abstract] [Full Text] [Related]

  • 49. [Inhibition by local anesthetics and barbiturates of the active transport of H+ in the synaptic vesicle membranes of the brain].
    Shukalova TF, Mel'nik VI, Glebov RN.
    Biull Eksp Biol Med; 1989 Aug 02; 108(8):185-8. PubMed ID: 2553153
    [Abstract] [Full Text] [Related]

  • 50. Amphetamine and other psychostimulants reduce pH gradients in midbrain dopaminergic neurons and chromaffin granules: a mechanism of action.
    Sulzer D, Rayport S.
    Neuron; 1990 Dec 02; 5(6):797-808. PubMed ID: 2268433
    [Abstract] [Full Text] [Related]

  • 51. Mechanisms of proton-linked monoamine transport in chromaffin granule ghosts.
    Knoth J, Zallakian M, Njus D.
    Fed Proc; 1982 Sep 02; 41(11):2742-5. PubMed ID: 7117548
    [Abstract] [Full Text] [Related]

  • 52. A characterization of the nucleotide uptake of chromaffin granules of bovine adrenal medulla.
    Aberer W, Kostron H, Huber E, Winkler H.
    Biochem J; 1978 Jun 15; 172(3):353-60. PubMed ID: 28725
    [Abstract] [Full Text] [Related]

  • 53. Specificity and properties of the nucleotide carrier in chromaffin granules from bovine adrenal medulla.
    Weber A, Westhead EW, Winkler H.
    Biochem J; 1983 Mar 15; 210(3):789-94. PubMed ID: 6307271
    [Abstract] [Full Text] [Related]

  • 54. Mechanisms of accumulation of tyramine, metaraminol, and isoproterenol in isolated chromaffin granules and ghosts.
    Johnson RG, Carty SE, Hayflick S, Scarpa A.
    Biochem Pharmacol; 1982 Mar 01; 31(5):815-23. PubMed ID: 7082350
    [Abstract] [Full Text] [Related]

  • 55. Stoichiometry of H+-linked dopamine transport in chromaffin granule ghosts.
    Knoth J, Zallakian M, Njus D.
    Biochemistry; 1981 Nov 10; 20(23):6625-9. PubMed ID: 6458332
    [Abstract] [Full Text] [Related]

  • 56. Uptake of meta-iodobenzylguanidine by bovine chromaffin granule membranes.
    Gasnier B, Roisin MP, Scherman D, Coornaert S, Desplanches G, Henry JP.
    Mol Pharmacol; 1986 Mar 10; 29(3):275-80. PubMed ID: 3951433
    [Abstract] [Full Text] [Related]

  • 57. A biophysical model of the chromaffin granule. Accurate description of the kinetics of ATP and Cl- dependent granule lysis.
    Creutz CE, Pollard HB.
    Biophys J; 1980 Aug 10; 31(2):255-70. PubMed ID: 6455169
    [Abstract] [Full Text] [Related]

  • 58. ATP-induced lysis of rat parotid secretory granules: possible role of ATP in exocytotic release.
    Oberg SG, Robinovitch MR.
    J Supramol Struct; 1980 Aug 10; 13(3):295-304. PubMed ID: 6163038
    [Abstract] [Full Text] [Related]

  • 59. Biochemical and immunological evidence for a calcium pump in chromaffin granules.
    King SC, Ellenberger TE, Goldin SM.
    Biochem Biophys Res Commun; 1988 Sep 15; 155(2):656-63. PubMed ID: 2971354
    [Abstract] [Full Text] [Related]

  • 60. Glutamate uptake into synaptic vesicles of bovine cerebral cortex and electrochemical potential difference of proton across the membrane.
    Shioi J, Naito S, Ueda T.
    Biochem J; 1989 Mar 01; 258(2):499-504. PubMed ID: 2565109
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 5.