These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


151 related items for PubMed ID: 16805109

  • 1. Adaptive Brownian dynamics simulation for estimating potential mean force in ion channel permeation.
    Krishnamurthy V, Chung SH.
    IEEE Trans Nanobioscience; 2006 Jun; 5(2):126-38. PubMed ID: 16805109
    [Abstract] [Full Text] [Related]

  • 2. Ion permeation through a narrow channel: using gramicidin to ascertain all-atom molecular dynamics potential of mean force methodology and biomolecular force fields.
    Allen TW, Andersen OS, Roux B.
    Biophys J; 2006 May 15; 90(10):3447-68. PubMed ID: 16500984
    [Abstract] [Full Text] [Related]

  • 3. Brownian dynamics simulation for modeling ion permeation across bionanotubes.
    Krishnamurthy V, Chung SH.
    IEEE Trans Nanobioscience; 2005 Mar 15; 4(1):102-11. PubMed ID: 15816176
    [Abstract] [Full Text] [Related]

  • 4. The role of the dielectric barrier in narrow biological channels: a novel composite approach to modeling single-channel currents.
    Mamonov AB, Coalson RD, Nitzan A, Kurnikova MG.
    Biophys J; 2003 Jun 15; 84(6):3646-61. PubMed ID: 12770873
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Poisson-Nernst-Planck theory approach to the calculation of current through biological ion channels.
    Coalson RD, Kurnikova MG.
    IEEE Trans Nanobioscience; 2005 Mar 15; 4(1):81-93. PubMed ID: 15816174
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Semi-Markov models for brownian dynamics permeation in biological ion channels.
    Krishnamurthy V, Luk KY.
    IEEE/ACM Trans Comput Biol Bioinform; 2011 Mar 15; 8(1):273-81. PubMed ID: 21071815
    [Abstract] [Full Text] [Related]

  • 10. Ion fluxes through nanopores and transmembrane channels.
    Bordin JR, Diehl A, Barbosa MC, Levin Y.
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Mar 15; 85(3 Pt 1):031914. PubMed ID: 22587130
    [Abstract] [Full Text] [Related]

  • 11. Continuum electrostatics fails to describe ion permeation in the gramicidin channel.
    Edwards S, Corry B, Kuyucak S, Chung SH.
    Biophys J; 2002 Sep 15; 83(3):1348-60. PubMed ID: 12202360
    [Abstract] [Full Text] [Related]

  • 12. The gramicidin ion channel: a model membrane protein.
    Kelkar DA, Chattopadhyay A.
    Biochim Biophys Acta; 2007 Sep 15; 1768(9):2011-25. PubMed ID: 17572379
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. A parallel finite element simulator for ion transport through three-dimensional ion channel systems.
    Tu B, Chen M, Xie Y, Zhang L, Eisenberg B, Lu B.
    J Comput Chem; 2013 Sep 15; 34(24):2065-78. PubMed ID: 23740647
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Energetics of K+ permeability through Gramicidin A by forward-reverse steered molecular dynamics.
    De Fabritiis G, Coveney PV, Villà-Freixa J.
    Proteins; 2008 Oct 15; 73(1):185-94. PubMed ID: 18412256
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Role of protein flexibility in ion permeation: a case study in gramicidin A.
    Baştuğ T, Gray-Weale A, Patra SM, Kuyucak S.
    Biophys J; 2006 Apr 01; 90(7):2285-96. PubMed ID: 16415054
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.