These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


585 related items for PubMed ID: 16805629

  • 1. New-generation amber united-atom force field.
    Yang L, Tan CH, Hsieh MJ, Wang J, Duan Y, Cieplak P, Caldwell J, Kollman PA, Luo R.
    J Phys Chem B; 2006 Jul 06; 110(26):13166-76. PubMed ID: 16805629
    [Abstract] [Full Text] [Related]

  • 2. Balancing simulation accuracy and efficiency with the Amber united atom force field.
    Hsieh MJ, Luo R.
    J Phys Chem B; 2010 Mar 04; 114(8):2886-93. PubMed ID: 20131885
    [Abstract] [Full Text] [Related]

  • 3. A new force field (ECEPP-05) for peptides, proteins, and organic molecules.
    Arnautova YA, Jagielska A, Scheraga HA.
    J Phys Chem B; 2006 Mar 16; 110(10):5025-44. PubMed ID: 16526746
    [Abstract] [Full Text] [Related]

  • 4. CHARMM fluctuating charge force field for proteins: II protein/solvent properties from molecular dynamics simulations using a nonadditive electrostatic model.
    Patel S, Mackerell AD, Brooks CL.
    J Comput Chem; 2004 Sep 16; 25(12):1504-14. PubMed ID: 15224394
    [Abstract] [Full Text] [Related]

  • 5. A coarse-grained protein-protein potential derived from an all-atom force field.
    Basdevant N, Borgis D, Ha-Duong T.
    J Phys Chem B; 2007 Aug 09; 111(31):9390-9. PubMed ID: 17616119
    [Abstract] [Full Text] [Related]

  • 6. Application of torsion angle molecular dynamics for efficient sampling of protein conformations.
    Chen J, Im W, Brooks CL.
    J Comput Chem; 2005 Nov 30; 26(15):1565-78. PubMed ID: 16145655
    [Abstract] [Full Text] [Related]

  • 7. The SAAP force field. A simple approach to a new all-atom protein force field by using single amino acid potential (SAAP) functions in various solvents.
    Iwaoka M, Tomoda S.
    J Comput Chem; 2003 Jul 30; 24(10):1192-200. PubMed ID: 12820126
    [Abstract] [Full Text] [Related]

  • 8. Discrimination between native and intentionally misfolded conformations of proteins: ES/IS, a new method for calculating conformational free energy that uses both dynamics simulations with an explicit solvent and an implicit solvent continuum model.
    Vorobjev YN, Almagro JC, Hermans J.
    Proteins; 1998 Sep 01; 32(4):399-413. PubMed ID: 9726412
    [Abstract] [Full Text] [Related]

  • 9. Comparison of a QM/MM force field and molecular mechanics force fields in simulations of alanine and glycine "dipeptides" (Ace-Ala-Nme and Ace-Gly-Nme) in water in relation to the problem of modeling the unfolded peptide backbone in solution.
    Hu H, Elstner M, Hermans J.
    Proteins; 2003 Feb 15; 50(3):451-63. PubMed ID: 12557187
    [Abstract] [Full Text] [Related]

  • 10. Application of the frozen atom approximation to the GB/SA continuum model for solvation free energy.
    Guvench O, Weiser J, Shenkin P, Kolossváry I, Still WC.
    J Comput Chem; 2002 Jan 30; 23(2):214-21. PubMed ID: 11924735
    [Abstract] [Full Text] [Related]

  • 11. Extending the treatment of backbone energetics in protein force fields: limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations.
    Mackerell AD, Feig M, Brooks CL.
    J Comput Chem; 2004 Aug 30; 25(11):1400-15. PubMed ID: 15185334
    [Abstract] [Full Text] [Related]

  • 12. Ab initio protein structure prediction with force field parameters derived from water-phase quantum chemical calculation.
    Katagiri D, Fuji H, Neya S, Hoshino T.
    J Comput Chem; 2008 Sep 30; 29(12):1930-44. PubMed ID: 18366016
    [Abstract] [Full Text] [Related]

  • 13. Comparative study of generalized born models: Born radii and peptide folding.
    Zhu J, Alexov E, Honig B.
    J Phys Chem B; 2005 Feb 24; 109(7):3008-22. PubMed ID: 16851315
    [Abstract] [Full Text] [Related]

  • 14. Atoms-in-molecules study of the genetically encoded amino acids. III. Bond and atomic properties and their correlations with experiment including mutation-induced changes in protein stability and genetic coding.
    Matta CF, Bader RF.
    Proteins; 2003 Aug 15; 52(3):360-99. PubMed ID: 12866050
    [Abstract] [Full Text] [Related]

  • 15. Peptide-TiO2 surface interaction in solution by ab initio and molecular dynamics simulations.
    Carravetta V, Monti S.
    J Phys Chem B; 2006 Mar 30; 110(12):6160-9. PubMed ID: 16553430
    [Abstract] [Full Text] [Related]

  • 16. All-atom level direct folding simulation of a betabetaalpha miniprotein.
    Jang S, Kim E, Pak Y.
    J Chem Phys; 2008 Mar 14; 128(10):105102. PubMed ID: 18345926
    [Abstract] [Full Text] [Related]

  • 17. Refining the description of peptide backbone conformations improves protein simulations using the GROMOS 53A6 force field.
    Cao Z, Lin Z, Wang J, Liu H.
    J Comput Chem; 2009 Mar 14; 30(4):645-60. PubMed ID: 18780355
    [Abstract] [Full Text] [Related]

  • 18. Exploratory studies of ab initio protein structure prediction: multiple copy simulated annealing, AMBER energy functions, and a generalized born/solvent accessibility solvation model.
    Liu Y, Beveridge DL.
    Proteins; 2002 Jan 01; 46(1):128-46. PubMed ID: 11746709
    [Abstract] [Full Text] [Related]

  • 19. Separation of time scale and coupling in the motion governed by the coarse-grained and fine degrees of freedom in a polypeptide backbone.
    Murarka RK, Liwo A, Scheraga HA.
    J Chem Phys; 2007 Oct 21; 127(15):155103. PubMed ID: 17949219
    [Abstract] [Full Text] [Related]

  • 20. Conformational simulations of aqueous solvated alpha-conotoxin GI and its single disulfide analogues using a polarizable force field model.
    Jiang N, Ma J.
    J Phys Chem A; 2008 Oct 09; 112(40):9854-67. PubMed ID: 18788721
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 30.